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ABSTRACT

The objects of this report are 1) a study of the dual displacement-
stress function finite element method in matrix form, with particular
consideration of a number of different types of boundary conditions,
and 2) implementation of the method as a computer system for the solu-
tion of both plate stretching and plate bending problems. The computer
system is developed as an addition to the general capabilities of the
Finite Element Analyzer, which in turn is a part of the problem-oriented
Structural Design Language (STRUDL) within the Integrated Civil Engin-
eering System (ICES).

The finite element displacement method as applied to stretching
of triangular plate elements is presented with particular reference to
formulation of the system equations in matrix form. The dual stress
function method for bending of triangular plate elements is then pre-
sented in light of the displacement method. Specific consideration is
given to a number of different types of boundary conditions of the
stretching and bending problems and the matrix modifications necessary
for the introduction of these conditions to the system of equations. The
additional problem-oriented language commands added to the Finite
Element Analyzer for use in solving dual plate stretching and bending
problems are presented in a partial user's manual intended as a sup-
plement to the Finite Element Analyzer User's Manual.

The actual programming of the system has been done in Command
Definition Language (CDL) and ICETRAN (ICES-FORTRAN) as part of
ICES. Detailed system documentation (data structure, data COMMON
storage, program descriptions, and program listings) is presented in
the appendices.

The initial implementation of the system is in a limited form,
but its flexibility and modularity allow for easy modification and soph-
istication at a later date.
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CHAPTER 1

Introduction and Objectives

The finite element method for the solution of structural mechanics
problems has been the subject of considerable research effort during the
past decade. First developed in the aircraft industry for the analysis
of complex airplane fuselages, the method has spread more recently into
mechanical and civil engineering work, including very recently fluid mechanics
and soil mechanics. A very good brief history of the method is given by
Ferrante (Ref. 1).

In the finite element method, the structural continuum is replaced
by a finite number of regularly shaped three-dimensional volume elements
or two-dimensional surface elements, and these elements are joined
together at a finite number of common points called nodes. Then certain
characteristic structural behavior quantities, usually displacement components,
of any point within an element are assumed to be some polynomial function
of their values at the nodes. This idealization reduces the differential
equations of behavior to an approximate set of algebraic equations that are
more readily solvable. Because the number of resulting unknowns and
equations is very large for any meaningfully accurate application of the
finite element method, the use of a digital computer for solution of the
equations is a necessity. Thus the development of the finite element
method has pardlleled the development of the digital computer and its
introduction to the solving of engineering problems. A more thorough
discussion of the general finite element and its philosophy is presented
by Clough (Ref. 2), Connor (Ref. 3), or Lundberg (Ref. 4).

In the analysis of plate and shell structures by the finite element
method, the unknown nodal structural behavior quantities are generally
taken as the displacement components associated with the two or three
coordinate directions. This procedure results in the use of a stiffness
matrix when the governing equations are expressed in matrix form. With
the use of triangular elements and displacements that are linear functions
of the nodal displacements and element coordinates, successful results are
reported by Clough (Ref.2) for the problem of plate stretching, but some

difficulties exist in applying the same method to the problem of plate
bending (Ref. 4 and 6).




Elias (Ref. 5) has studied the mathematical duality that exists
between the problems of stretching and bending of plates and has developed
(Ref. 7) a finite element stress function method for plate bending that is
the dual of the well-tested displacement method for plate stretching. In
this dual method, nodal values of two stress functions are used as the
unknown quantities, resulting in a flexibility matrix dual of the stiffness
matrix of the stretching problem.

The objectives of this thesis are to review and continue the study
of the dual finite element stress function method, with particular reference
to formulation of all equations in matrix form and consideration of a number
of different types of boundary conditions, and to implement the method as

a computer system for the solution of plate bending and stretching problems.

The system takes the form of capabilities added to a general Finite
Element Analyzer developed in the Department of Civil Engineering of
MIT by Ferrante (Ref. 1). It is written as a problem oriented-language,
which puts input and output in the language of the structural engineer and
minimizes the amount of computer knowledge required of the user. The
system's organization as a set of load modules will allow relatively

easy modification and sophistication at a later date.
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CHAPTER 2

Formulation of the System of Equations

2.1 Introduction

The finite element discretization method studied in this thesis
consists of subdividing the plate structure into flat triangular elements
with three nodes coinciding with the three vertices of the triangle. The
two-dimensional elements represent the middle surface of the three-
dimensional plate and coincide with the x-y plane of a right-handed x-y-z

cartesian coordinate system.

In this chapter the geometric and material properties of the
triangular element are presented first. Then the derivation of the
equations for the plate stretching problem (Ref. 7) is reviewed and expressed
in matrix form. Finally, the duality between the problems of plate bending
and plate stretching is reviewed and the equations for the plate bending
problem are obtained from those of the plate stretching problem via the
duality correspondence. In both problem cases, a discussion of the
solvability of the resulting sets of equations is presented.
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2.2 Properties of the Orthotropic Triangular Finite Element

The triangular finite element n (figure 1) has nodes n, = d, n, = e,
and ng = f ordered counter clockwise around the element, with cartesian
coordinates (xi, yi) for node i (i = d, e, f) referred to some global reference
frame. The following notation will be adopted:

ad=-xe+xf

(1)
by = Vet g
Quantities ags ap be’ and bf are then obtained by permuting d, e, and {
in Eqs 1. Note that a bi are the cartesian components of side (i), opposite
node i, considered as a vector oriented counter clockwise (as shown in
Fig. 1).

The area of element n is then
An = 1/2 l-‘xdbd - xebe - befl (2)

The thickness of the element n will be taken as the average thickness

of the plate in the region covered by element n:
h = 1 Jf h(x,y) dxdy (3)
n
Ay
A
n

The material of the triangular finite element is assumed to be
homogeneous, linearly elastic, and orthotropic, with axes of orthotropy
coinciding with the global reference axes. Thus the following properties
characterize the element:

X y : Young's Moduli
v,V : Poisson's coefficients
X y
a ay : coefficients of thermal expansion
G : shear modulus

In addition,

VXEX = Vjﬁy (4)
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exists for an orthotropic material.

2.3 Derivation of the equations for the Plate Stretching Problem

The plate element n (Fig. 2) is subject to a distributed surface
load vector

- - -
P = Pyl * Pyl (5)

edge load intensity vectors (force/unit length)

N o= NLT 4 N;.j. (i=d e, 1), (6)
concentrated nodal forces
F. =F_.1+F_.3J (7)
i xi yi

and a temperature change AT = AT (x,y) causing initial strains which, in turn,

are resisted by initial stresses

o -E h o o -E haT
Nx S T-vw (Ex+vxay) = T-v_v (ax+vxay)
Xy Xy

(8)
-E h - E_hAT

-v_ vV
X

2
< 0
a
!
<
<
V)
< 0
-+
<
«
(V]
o)
H

o +v a)
(Y y X

The plate element is in equilibrium under these loads and stresses. The
displacement vector

u(x,y) = ulx,y)1 + vizy)J (9)

describes the displacement of a point on the middle surface of the element.

If it is assumed that the displacement at any point in the element is a linear
function of the displacements at the three corner nodes, i.e., that the element
is in a constant state of strain, then the behavior of the plate element can be
completely characterized by the six nodal variables u, vy (i=d,e,f). Thus,
the potential energy of the element, expressed as a functional of the vector
displacement function T(x,y), can now be expressed as a function of six
scalar variables.
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FIGURE 1. TRIANGULAR ELEMENT GEOMETRY.

FIGURE 2. LOADS AND DISPLACEMENTS OF THE
TRIANGULAR FINITE ELEMENT.
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T = Wn(ud, Vd, ue; Ve: uf’ Vf) (10)

i

potential energy of element n

The variational principle of stationary potential energy then requires
that the potential energy of element n be stationary with respect to
variations of the six variables. Mathematically, this requirement takes
the form

8 \
S
Bui
5. > (i®d,ef) (11)
ov, 0
L)

The details of this variational formulation of the plate stretching problem,
including expressions for strain energy density and potential energy, are
given in Ref. 7. Only the resulting expressions for Egs. (11) will be
presented here.

When the expression for T given in Ref.7 , Eq (49), in terms of
the unknown nodal displacements, applied loadings, and geometric and
material properties of element n is substituted into Eqs (11), there results
a set of six force-displacement relations for the element

K*%u +K u + K0+ Ky +K’1‘Zve+K".yv -

id%q FEES SAS itVe
(12)
n n .
PL*RL+ O +F, (i=def
X, yX X, Y, yy Y. -
Kigha T Kiele * Kjgup + Kigvy + Kigve + Kievy
(13)
n n n .
Pyi+Ryi+6yi+Fyi (1-d,e,f)
where
K*¥ &« D E,b.b. + G(1- vy aa. | = K*X (14)
ij n iy 1] i

K¥ = - - yx
Dn Eilxvxbiaj +G(1 vxvy)aiaﬂ = KV (15)
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KY* = -D_ |E b, + G (1- = KXy 1
: I:yvya13+ ( vv)baJ] K7 (16)
Y = L
K} D_ [Eyaiaj ¥ G 1oy )blbﬂ K an
(i, j = d,e,f)
hn
D= = (18)
n 4 A (1 VxVyT
n % )
Fri T \“prgi “n i=d,e,f (19)
( r =x,y

f,
1 k k
= z:-— N s, ds (20)
r k k
% X) y

(k =two edges adjacent to node
i; Sy oriented toward node i)

n bi ( o) )
9Xi = EK; ) NX dAn (21)
= d,e,f
0 ai r . >1 e
eyi = SA Ny dAn (22)
n 4
o

n

Thus, P., Pn
xi

vi are the generalized nodal forces due to the distributed surface

load R Rn

; are the generalized nodal forces due to the edge load
1ntens1t1es and 9x1 91;1 are the generalized nodal forces due to the temper-
ature change. The total generalized nodal loads (right hand sides of Eqgs.

(12) and (13))will be denoted by S?;i and s;i in what follows.

Let §f; = {Sn Sn.} be the total generalized nodal load column

xi yi
matrix. Let Qi = {ui Vi} be the nodal displacement matrix (i =d, e, f).

Then Eqgs (12) and (13) can be expressed as three matrix equations

n ... n n SRS o =
KigUd * KieUe + KifUp = 83 (=dieD 23
where
K** :K"Y
n _ ij . s _
K-- - ——a a— 1, _d,e,f 24
Ki; = TR (i,j ) (24)
ij i

Symbols Ei are the dimensionless triangular coordinates. They are
explained on page 5 of Ref. 7.
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n . xy yx n _
K;j is not symmetric, because KX $ K ijr DUt Xy (531) The

superscript n denotes the element to which ‘Igll’l:l belongs.

Now consider a typical node i in a finite element representation
of a continuous plate (fig. 3). Node i is common to elements k,1, m,n and
p, and is connected through these elements to nodes q,r,s,t and w.
Equation (23) can be considered as the contribution of element n to the
total generalized nodal force at node i, if i,s, and t replace d,e, and f.

Thus the total generalized nodal force at node i due to all elements incident
upon it would be

Z (§g -E) + F. (G=klmn,p) (25)
i

The definition of _§‘3 includes the concentrated nodal force F.. Since this
force acts only once at each node, it must be subtracted from §_;1' before
the summation in Eq (25) and added back in after the summation.

The total matrix force-displacement relation for node i becomes

J m
(Dogy ¢ B L ¢ T KDL,
p p 1 =
(K +ED Y+ K] +§IW)U + (_}glq+1§iq)g 5, (26)

Eqgs (26) can be generalized to apply to any node in the plate. The
system of equations resulting from the application of Eqs (26) to every
node of the structure is (in supermatrix form)

KU = 8 (27)
or explicitly

A ¥

11 B - - - Bl 1Y

L
J
]
9
'

K.. . . . . . S.
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FIGURE 3. A TYPICAL NODE (i) IN A TRIANGULAR
FINITE ELEMENT REPRESENTATION OF
A PLATE.

APPLIED
LOAD

S (TANGENT TO
BOUNDARY)

o > X n (OUTWARD NORMAL
GLOBAL REFERENCE TO BOUNDARY)
FRAME

FIGURE 4. PLATE BENDING PROBLEM NOTATION.
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Knl . . . . . . Iﬁnn E_Jn §n
L amd b -l e P

b 2n o i fo-1f
where n now equals the total number of nodes in the finite element repre-
sentation. The assembly of the supermatrices K and g follows the well-

established procedure of the direct stiffness method (which follows from
Egs (25):

1) For element n, with nodes ny, Ny, and ng:

a) gﬁ n in super-row n, super-column nj of K (28)
Y1 Gi=12,3) |

b) (§2 - En ) in super-row n, of § i=1,2,3) (29)
i i

Step 1) is repeated for every element in the structure.

2) Ei in super-row i of E (1 =1,2,3...... n) (30)
Since E?j = (I.g?i)T’ the resulting stiffness matrix K is symmetric,

and thus only half of it (the diagonal plus elements below the diagonal)
need be assembled.

The system of equations (27) is singular, i.e., there exists a non-
trivial solution to the system where § =0, and thus lﬁl = 0. The non-trivial
solutions LJ_O are the nodal displacements of a rigid-body motion, which was
not suppressed in the preceeding development. To fix the plate against
rigid-body motion, the displacements of some node r (ur,vr) plus the
rotation about that node must be known. Knowing the rotation is equivalent
to knowing the displacement of another node s in the direction perpendicular
to the line joining r and s. Thus three displacement components must be
known to suppress rigid-body motion of the plate. These displacements are
then the minimum boundary conditions that must be specified in order to
solve Egs (27). Once they are specified, they may be moved over to the
right hand side (known side), and the number of unknowns reduced by three.
Thus three equations from among Eqs (27) may be eliminated. The resulting

system of 2n-3 equations is non-singular and may be solved by inverting the
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reduced K matrix or any other convenient method.
- The generalized nodal forces _1321 and B_;l resulting from edge stress

resultant intensities Nnx and Nny contribute nothing to the total generalized
nodal force _§1 from an interior edge (an edge common to two elements) because
the stress resultants are equal in magnitude but opposite in direction for

the two elements joined along the edge. In the initial asseimbly of the § matrix,
the contributions of Br; can be ignored at all nodes because the contribution

is zero for an interior edge and the contribution for a boundary edge will be
added later during the explicit treatment of boundary conditions. Thus,
initially, §; = B, +8§; +E,, (i =12,....n).
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2.4 Duality Between the Problem of Plate Stretching and

Plate Bending

Consider a plate in the x-y plane (Fig. 4), in equilibrium under
an applied surface load vector intensity

p = pz(x,y)'lz (31)
boundary effective shears of vector intensity
Q = Q. (s)k (32)
and boundary bending stress couples of vector intensity
M =M _(s)s. (33)
nn

For small displacements, this system of loads will produce primarily
bending in the plate, with negligible stretching.

The solution of the plate bending problem can be considered
as composed of two parts: 1) a Barticular solution of the equilibrium
equations that equilibrates the applied surface load without necessarily
satisfying compatability or the boundary conditions, and 2) a self-

equilibrating homogeneous solution that compensates for the particular

solution in such a way that the total or general solution (sum of homo-
geneous and particular) satisfies equilibrium, compatibility, and the

boundary conditions.

The equilibrium equations for plate bending are

M + M - Q = 0 (34)
XX, X VX, ¥ X
- =0 (35)
Xy, X yy.¥ Qy
+ + = 3
Qx’ % Qy’ v P, 0 (36)

where denotes differentiation with respect to r, the M's are stress

couples, and the Q's are shears, as defined in Fig. 5.

A particular solution of Egs. 34-36, denoted by superscript p,
is taken as
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P (x,y)

FIGURE 5. DEFINITION OF SHEARS AND STRESS
COUPLES ACTING ON THE DIFFERENTIAL
PLATE ELEMENT.



MP = MP = 0 (37)
Xy yX
MP = -D (K + v K) (38)
XX x Yy X X
MP = D (K + v K) (39)
yy y X yy
P = p
Qx XX, X (40)
Q¥ = M™P (41)
y yYy,y
where
E_n’
D = st (42)
X 12( 1- VxVy)
E_n’
y 12(1 vxvy)
and Kx’ Ky are particular solution functions satisfying the differential
equation.
D (K + v_K)) + D(K + v K) - = 0 (44)
[X y xx],xx [Y y y ¥y 3.5y Pz

The stress couples and shears of Eqs. 37-41 are those that would occur
in two families of strips parallel to the coordinate axes, arbitrarily
supported and acting independently of each other. The load p, may then
be divided arbitrarily between the two families of strips. The reason
for introducing the two functions KX and Ky will become apparent in
what follows.

The variables of the bending problem can be expressed as sums

of the particular solution portion and the homogeneous solution portion;
for example
M = MP  + Mx (45)
XX

XX XX

where * indicates a quantity associated with the homogeneous solution.
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Representing the variables in this way, a duality exists between the
equations of plate stretching and plate bending (Ref. 7 ), In
particular, the finite element displacement method of solution of the
plate stretching problem, developed in the previous section, has a
dual stress function method of solution for the bending problem. The
force-displacement relations of the stretching problem become
rotation-stress function relations of the bending problem upon
substitution of the corresponding dual variables and constants. The

correspondence of this duality is summarized in Table 1.
The resulting system of equations for solution of the plate
bending problem becomes, in supermatrix form

K'U = § (46)

where

K' = bending "flexibility' matrix dual
of the stretching stiffness matrix (47)

U' "= column matrix of nodal values of
the stress functions U and V (48)

S' = column matrix of total generalized
nodal rotations, dual of the gen-
eralized nodal force matrix (49)

This system is also singular and the non-trivial solution g,o of the
homogeneous system (§' = 0) are dual of the rigid-body displacements
of the stretching problem. Just as the rigid-body displacement yields
zero strains, the solutions I_J_'o for the stress functions yield zero
stress couples and shears.
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TABLE 1

Duality Between the Problems of Stretching and Bending

Stress-Strain
Strain-Displacement

Stress-Stress Function

Stretching Bending
[ —————
Equations:
Equilibrium Compatibility
Compatibility Equilibrium

Stress-Strain
Stress-Stress Function

Curvature-Displacement

Material Properties:

E_h, E h, Gh
X Y

-p-! -p71l, —(and/37!
y X

-V ., =V
x Yy

u, v U, V (stress functions)
N° N° -x°, -x° (thermal curvatures)
X y y p'e
s K , K
px py X;X Y.y }
N_,N , N “X X, =X
XX Xy yy yy Xy XX
(cartesian curvatures)
. sk : e
€, €_, € M_, -M
XX Xy Yy yy xy XX
b3 3
Nnx’ n -X ., X (boundary
Y Sy SX curvatures)
sk sk
€ _, X (boundary strain M_, Q
S8 and in-plane nn ne
curvature)
Matrices:
.., P., R.,@., U. ', P!, R! ', U!
=ij’ =i Bl 91 gl ‘ISIJ Pl Bl’ 61 I»"-11
(i=1,2,....,n) (i=1,2,...,n)
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CHAPTER 3

3.1 Introduction of Boundary Conditions for the Plate

Stretching Problem

1) Stress Boundary Conditions:

Known edge load intensities Nnx and Nn contribute to the generalized
nodal force at the boundary nodes. Thus at a node i joining boundary seg-
ments (boundary element edges) m and n

m n

= 1— m .L. 123
Rri Em J Nr Sm dsm + I’n f Nr Sn dsn (50)

o (o]

(r=x,y; S’ Sp oriented towards node i)

Then R. = {R . R } is added to S. for every node i along portions of
~i xi Tyi =i

the boundary on which edge load intensities are known.

If the acutal edge load intensities, functions of positions along the
boundary, are approximated by a linear variation between boundary nodes,
then they may be completely specified by their values at the boundary nodes,

X

N i and Nyi . .Using this approximation, the integrals of Egs.(50) are
evaluated to give '

= 4im + + 20 +
Rri 6 (Nrj 2Nri) 6 (th 2Nri) (51)

where j and h are the nodes at the other ends of segments m and n,
respectively. |

2) Displacement Boundary Conditions:

If the two componenets of displacements at a node i (ui, Vi) are
known, then there are two less unknown nodal displacements and the
corresponding two equations at node i (Eqs(26)) can be deleted from the
system of Eqs (27). Also, terms involving Qi in the other equations of
system (27) are known and can be moved to the right hand side and added
to §_1 . The modifications to the stiffness and load matrices for the
introduction of known pairs of displacements at a node i are then
accomplished as follows:
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a) in K:
K.. 0
~1] >0 g #Fi (52)
i =1,2,...n
K.. =0 (53)
Eii — 3 ‘1-2 (2 X 2 unit matrix) (54)
b) in S:
§J:>§J.-I§ji~l J¢1,J=1,2,...n (55)
S. = U. (56)

where = means ''is replaced by. "

The matrix multiplications shown above and in later sections of this
chapter are used as notational devices to arrive at a more clear, concise
presentation of the theory. In the actual computer solution of such problems,
the matrix multiplications are usually not performed explicitly, and in fact
many of the matrices defined in this chapter are not actually used explicitly

in the computer.

3) Mixed Boundary Conditions:

Consider the case of a boundary node i at which one component of
displacement is known in a direction r (ur) and one component of edge
stress resultant is known in the direction perpendicular to r along the edge
segments adjacent to node i (Fig. 6). The angle ¢ relates the r direction
to the global x-axis, positive from x to r. The treatment of these mixed

boundary conditions follows the well-known procedure given below:

o . % i o
a) Define five matrices Ei’ G., u:, R, and ﬂi’

=i
& 0 o 1 0 " ug (57)
L. Tl g = u, = 5
i LO 1 1 0 0 i o
. [coss -sing . 1o
R = R; = (58)
Lsmd) cos ¢ qu

where q is the direction perpendicular to r, and qu ig determined from
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FIGURE 6. NOTATION FOR MIXED
BOUNDARY CONDITIONS.

FIGURE 7. NOTATION FOR THE EDGE
BEAM BOUNDARY.



_26..
Eq. (50) or Eq. (51) with r replaced by q.

b) Perform the following modifications upon the matrices K and S:

i) K., = K31~ B, (59)
G =12 ...,n 71 -
i sk
§J b‘SJ - EJIB' ER (60)
. i, T i
i) By = (R DE;BE) TG (61)
sk i, T - 1 E b
.S.l %i + E R (§i KB l‘li) +uy (62)
i) K,, > (E,R" 1) K., (63)
~ij =i= ij
G =12 ...,n #1i

The solution of Eqs (27) will then yield J, = {uri uqi} for the displacements
at node i. To obtain the displacements referred to the global axes, U,
must be multiplied by Bl, the rotation matrix from the r-q axes to the x-y axes.

4) Elastic Boundary Supports:

If a boundary of the plate is supported elastically, the stress
resultants on the boundary edge will be functions of the unknown edge
displacements. Thus the generalized nodal forces due to these edge stresses
will be functions of the unknown nodal displacements and must be moved to
the left hand side of Eqs. (27).

If the elasticity of the boundary support is specified by kxx’ kxy’ and
(all functions of position along the boundary) such that

S s
kxx(u - u) + kxy(v - V) (64)

N
nx

N

s s
ny kyx(u - u) + kyy(v - V) (65)

where u® and v° are the known displacements of the elastic boundary support,
then the generalized nodal forces at each node i along the elastic boundary
become
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R = 24 REE @S - u) + 2}C‘y(v (66)

xi k = h,i,] k =h,i,j

Ryi 2{ (uk -u) t 2( (vk - Vi (67)

where h and j are the nodes before and after i on the boundary. In

matrix form, Eqgs. (66) and (67) become

= 5 - o+ -
By Lih(gh g ) kll(yl Y li ([-J'J -' (68)
where
xx | g Xy
k ir | jlir‘ ( b )
N M r = h,i,j 69
Sir yx | kyy J (69)
ir | ir
Zm Ln
pex= 1 k2 ds + — k_S%ds (70)
=~ XX m m 1&2 XX n n
ir
£ n
m o o
£
m
b= - 1 k S (4 _ - S_)ds (71)
ih 22 xx"m ' m m m
m o
2
n
kXX=-1_ k.S (1 - S)dS (72)
i xx"n''n n n
ij £2
n o

and m and n are the segments before and after node i; (s__ and s_ are
xy vx m n
oriented towards node i), QuantltleskJ k i ahd

kyyare obtained from Eqs. (70) - (72) by usmg in turn kxy’ k_, and kyy

yx
in the integrals.
Egs. (68) require the following matrix modifications to K and § for
each row i along the elastic boundary:
a) in K:
Kin P K Ay (73)

+
Bi >y ,.Eij (74)
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+
Ky > Ky * Ay (78)
b) in §:
+ s s s
538 Ryl ¢ ks + -kijg' (76)

5) Plate Bounded by an Edge Beam:

If the plate is supported by an edge beam, account must be taken of the
beam potential energy in the variational formulation of Egs (27).

If the beam is loaded externally by stress resultants NX and Ny per
length of edge beam, they give rise to generalized nodal forces

:F:‘i = in F i} at each node i along the edge beam, as determined by
equations like Eqgs (50). A portion of these nodal forces is resisted by
the edge beam and the remainder is transmitted to the plate elements. If
the portion resisted by the edge beam is denoted by é}j‘i = {AFXi AFyi}
at a node i, then Bi’ the portion transmitted to the plate, is given by
= F. - AF. (77)

,.1 ~] — ]

Expressions for é:'Fi in terms of the nodal displacements and the
beam material properties are determined from variations of the beam
potenetial energy with respect to the nodal displacements. Account must be
taken of the strain energy due to bending, which is expressed in terms of the
curvature of the edge beam. In the piece-wise linear boundary idealization
used here, curvature does not actually exist and must be interpreted
instead as the difference between side rotations of two adjacent boundary

segments. The rotation of a segment n connceting nodes i and j is given
by

i
W= Zl [- (uj - ui) cos¢ - (vj - vi) sindzr;[ (78)

where ¢  is the angle from the x-axis to the outward boundary normal vector
n at segment n (Fig. 7). The curvature at node i is then expressed as the
difference of rotations of adjacent segments m and n

= 2 (79)
Xi (Wm B Wn) (T-_-*-T)
m n
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Introducing the notation

(ED),_; *+ (ED),

d, = (80)
k 4 * 41

a = EkAklk ' (81)
sin¢ -a

s, = k = k (82)
k I'k zz
k
cos ¢ b

c, = k = _k (83)
k £ 2
k Lk

where Ak is the cross-section area, Ek the Young's modulus, I, the

k

moment of inertia about the z-axis, and zk the length of edge beam segment
k, which connects node k to node k +1, the following equivalent stiffness
factors (Ref. 7) can be used to represent the beam behavior at a node i

(Fig. 8):

\
k;{ix - “’hsﬁ * aiSiz + di(ch+ci)2 + dhcf1 + djdi2
K = ahSi - 44C,(C, +C)) - ¢ C(Cp+Cy)
kfg = %Siz - diCi(Ch+Ci) - djdi(ci +Cj) > (84)
Kg = 9CCh
e = 4CC
kiy T -epS,Cp - S,C; +d,(C; +C(S; +5)
* 48,Cp - 45,
Ky = @S0y - 48, (Cp +C) = 4, Cp (S, +S,)
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Xy = - -

kij @;S;C; - 4;8,(C, +C)) dei(Si+Sj)

Xy =

kig thgCh > (84)
kY = 4s.C.

ik jji

S
Quantities ki’: and kﬁ' (q =g,h,i,j,k) are obtained from Egs (84)
by interchanging x and y and sq and cq . Using these stiffness factors,

the generalized nodal forces become

o

A)—E‘l = El + a-ls'ngn (85)
n=g,h,i,jk
where
xx | KXY
in | Vin
¥n T |77, T (86)
W Ly
in | "in
and E? = {F}o{i F;i} are generalized nodal forces due to initial thermal

strains in the beam, given by (Ref. 7 )

o = (o} o) 1 o
Fei ~ %nSn€n = %5i€5 - F9(Cy TG Uy H ARy (87)
1 o 1 o
t5d,Cp 4, +2)% +5d,C; (4 +/zj)7(:i
o = o o 1 o
= - - - + +
Fei @, C, €p + a,C €7 - 5d,(5, +8) (4 + L)X
1 o 1 o (88)
- + + = +
+ 58, U LRY. 8 5 4;8; (4 zj>7<j

where éio is an axial thermal strain due to a uniform temperature change
in the beam and X? is a curvature in the x-y plane due to a temperature

differential between the inner and outer faces of the beam.

Eqgs. (85) result in the following modifications to K and § for each
node i on the edge beam boundary:
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a) row of i of K:

+ - ..

b) row of i of S

(o] T .
S; =S, - E; + F. (90)

6) Strain Boundary Conditions:

Consider a portion of the plate boundary along which externsional
strain and in-plane curvature are known. In the finite element idealization
used here, displacements vary linearly between nodes. Thus the boundary
extensional strain (GSS) is constant in any boundary segment and each
segment remains straight after deformation. As mentioned during con-
sideration of edge beams, the curvature is then defined only at each node
and is the difference between the rotations of the two adjacent boundary
segments. Thus strain boundary conditions"take the form of an extensional

Strain prescribed for each segment and a curvature prescribed for each
node. Then

€, = " sing (u y-u) + cos¢, Vo1~V (91)

for a segment n joining nodes n and ntl. Using Eqgs (78) and (79), the

curvature at node n becomes

- 2 1 .
X v ST [—(um_l-un) cos d)n - (vn+1-vn) s1n¢n]
n n-1 n
(92)
1 ' ,
- 1’/—-—n—1 E(un-un_l) Cosd)n_l - (Vn-vn_l)_s1n¢n_1

where segment n-1 joins node n-1 to node n.

If the total number of nodes along the strain portion of the boundary
(including the two end nodes) is s, then there are 2s unknown nodal displace-
ments. One equation like (91) can be written for each segment and one
equation like (92) can be written for each node except the two end nodes, for
a total of 2s-3 equations. The remaining three conditions needed to solve

the strain boundary portion are usually one of the following groups:
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a) Specification of the two force resultants and moment of the
boundary forces (along the boundary portion being considered)

with regard to some point.

b) Specification of the three components of rigid hody motion of
the boundary portion (2 displacements at a node plus the rotation

of an adjacent edge segment).

c) Specification of two displacement components of a point p not
necessarily on the boundary line plus specification of the
resultant moment of the boundary forces with regard to the same
point p.

This third specification group is used when the plate is attached to a rigid
material body that is pinned at some point, i.e., fixed to rotate about some

point not necessarily on the plate-rigid material interface (Fig. 9).

It is noted that the above equationsfor solving the boundary portion,
which will replace the force-displacement relations for all nodes i along
the strain boundary portion, are compatibility or strain-displacement
relations rather than the qquilibrium equations upon which Egs (27) are
based. Introduction of strain boundary conditions into the system of Eqs (27)
will result in certain rows being replaced without replacing the corresponding
columns, and thus the ''stiffness'’ matrix K will no longer be symmetrical.
The matrix modifications for the introduction of strain boundary conditions
are now developed.

Consider the strain portion of the boundary to have nodes numbered
tonsecutively from 1 to s in the +s direction, with segment (i) following
node i. The +s direction is the direction traversed along the boundary
keeping the outward normal on the right (Fig.10). At each node i (i=1,s)
Eq (91) for segment (i) can be combined with Eq (92) for node i to give

the matrix equation

LY F U TEDY - By T (93)
where
1 0 ' 0 sin¢ ! -cosd>n
o T T co§‘¢—"sm—¢“ : B, = |eosé | sing (94)
n | n n l n
i L | L
|
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and
€i
& T YIS oo T (95)
5 X (zi+z_1)

Eq (93) then replaces Eq (26) for node i in the total system (27).

Specifically the modifications are

K o1 = i (96)
i = all nodes on the
Eii > —'~Ii-1 +ini boundary portion (97)
except the two
K 11 > & end nodes (98)
S j = 1,2,...,n
£y Qs j# i-1,i,i41 (99)
5; = €, (100)
/
where 92 is a 2X2 zero matrix.
If the rigid body displacement of the boundary is specified, the
two displacement components (given for end node 1) are treated as in the
case of displacement boundary conditions. The specified rotation of edge
segment (1), wy, is combined with Eq (91) for segment (1) to give
€1
- Ml sz = ..w..l.. - Ml le (101)
where, in general for side i,
- : . | .
sin¢ . -~ cosé.
M, = T |cose i TemE (102)
i i) Sing
which is then used to replace super-row s of K and S and results in the
following modifications:
Ko = -M, (103)
Ks; — 92 (j =3,4,. . . .,n) (104)
1 (105)
5 = o (T A
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If no rigid body motion of the boundary portion is specified, two
force resultants and one moment resultant of the boundary forces must be
specified for the boundary portion. In matrix form, the force resultants

of the boundary portion forces are given by

S

2 R) = E (106)

i=1

where F_ = {Fx Fy } is the matrix of forces applied externally to the
rigid boundary portion. If ‘L‘i is used to represent the (2x2n) supermatrix

of super-row i of the stiffness matrix,

G (B me B Ba (10

then Eqgs (106) become, upon use of Eqs (26),

S S
E L] U = S (8,) + E (108)
i+ i=l

Egs (108) are written at node 1 and result in the following changes in
super-row 1 of K and S:

Elj * E ‘I.{lj (j=1,2;- . "n) (109)
i=1
S
8, = E + E (8,) (110)
i=1

The moment resultant of the boundary portion forces about a specified

point p with coordinates Xp and yp is given by

S
Yo = —
D>, ®)T{sRst - B (111)
i=1 1P

The moment resultant is combined with Eq (91) written for segment (1) and
the resulting pair of equations is used as the pair of equations for node s,

thus replacing super-row s of Eqs (27). The changes to super-row of Kand §
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are as follows:

S
Ksp = X Bt h (112)
i=1
S
Ko = 2, %% ~ & (113)
i=1
s
Ksj = Zigij (j=3,4,...,n) (114)
i=1
s
- ' - M
[yp Yi ' X Xp] §1 " Mp
i=1
S5 = (115)
€
1
where
y1- ¥ )X x o | o
X, = I S DU L s P = _—— = (116)
~i 0 ! 0 ~i smq&i| cos<i>i

Finally, if the rigid boundary portion is pinned at some point p not
necessarily on the boundary edge and has freedom to rotate about that point,
equations relating the displacements of node 1 and the rotation of segment (1)
to-the known displacements of pin-support point p, gp’ must be used at node 1.
The above combination of moment resultant and Eq (91) is still used at
node s. At node 1, the equations become

X cos ¢ sin¢
RT y +—Rl:———-1—|—-—1—] (U, - U

) = RT U (117)

where R is given by Eq (58) if 6 replaces ¢i. Angle 6 relates the line
joining point p and node 1 to the global reference frame. Xp is the length of
that line (see Fig. 11). The changes to K and S required to treat the

pinned rigid boundary are as follows:




-37-

FIGURE 10. NOTATION FOR THE STRAIN
BOUNDARY PORTION.

FIGURE 11. NOTATION FOR THE PINNED
RIGID BOUNDARY.
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X cos ¢ I sin ¢
T P S __1_
K;; = BYy 2 ] (118)
-X cos¢, | siné
1 1
Ki2 => TlR [_o—‘|— 6"‘] (119)
Kyj > 0, (j=3.4,...,n) (120)
- ,
< > R yb (121)

7) Dislocations in Multiply Connected Plates:

A multiply connected plate (one with more than one closed boundary
curve) may have internal, self-equilibrating stresses corresponding to the
closing of dislocations (Refs.7and11). These initial stresses are continuous
across the closed dislocation but the displacements of each node k along the
dislocation are multivalued. Let UE be the matrix displacement of node k on
the positive side of the dislocation and I—-JI:: be the matrix displacement on the
negative side (Fig. 12). The difference between them is related to the rigid-
body motion of the positive side of the dislocation in the closing of the

dislocation:

- o -y
SERAIRIE (ST L SRS PP B (122)

56U
=k 5v° Xy

~k

where 6uo, 5v° are the rigid-body translations and é W is the rigid-body
rotation about the global origin. Eq (26) written for a node k on the dislocation
includes an additional generalized nodal force representing the initial

stresses due to the closing of the dislocation in the form

C L) s n
oy = 7y - B U v E: Exx
n

(123)

p e _ ..d
DL EROY &K Y
p

where nodes i and j, and elements m, s, e, and d are located as shown
in Fig. 12, and
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FIGURE 12. NOTATION FOR THE DISLOCATION
PROBLEM.
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n = all elements incident upon node k on the negative side (124)
of the dislocation
p = all elements incident upon node k on the positive side (125)

of the dislocation

For a node p not on the dislocation but connected to it by an
element, Eq (26) will involve the d1sp1acements of at least one dislocation
node, say q. One of the terms quUq or quUq will appear in Eq (26)
depending on which side of the dislocation p is located. The "average'

displacement at q can be expressed as

- 1 + 1
= U 4+ = = Y 126
so that
- 1
K U =K U +<K$ 127
~pg~=q =pa=q 2~pq-Uq (127)
k ut = K U - 2K U (128)
=pg~q =~pa=~q 2>=pa—q

Since the second term in each of Egs (127) and (128) is completely known,
it can be moved to the right-hand side of Eq (26) and treated as an additional
generalized nodal load Q__I_?p.

In summary, the modifications to the generalized nodal load

matrix S required to include the closing of dislocations are as follows:
a) for each node i lying on the dislocation:

_S_1 == §i + 6‘_I_“i (gﬂi given by Eq (123)) (129)
b) for each node p connected to the dislocation on the positive side:

12]
S = S -+ K 86U 130)
~p =p 2 ~pq =q (

q

¢) for each node p connected to the dislocation on the negative side:

1
5 > T2 z (131)

q

where in both b) and c) the summation q extends over all nodes that are

on the dislocation and connected to p.
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3.2 Introduction of Boundary Conditions for the Dual Plate Bending Problem

1) Displacement Boundary Conditions:

Displacement boundary conditions take the form of the z component
of nodal displacement (w) being known along a portion of the boundary along
with slope of the plate edge in the direction perpendicular to the edge (w,n).
In the finite element method, only the average value of w, over an edge
segment need be known. The average value of Wi (the slope of the edge in

the direction parallel to the edge) is computed for each segment i from

[0y = ), ] 78 (132)
where nodes i and i+l are at each end of segment i. The cartesian compo-
nents of average edge slope for segment i then become

W, T W, cosd)i - Wi smd)i (133)

2
]

y w, sin ¢i - W,  Cos ¢i (134)

Now consider a node k on the boundary, between segments m and
n. The total generalized nodal rotations due to edge slope can be computed
directly from W, and w,y (Ref. 7).

R = w) sing +(w,) cosé - (w, ) -sing
(135)
- (W’s)m cosé
Rg,k = (w, ) cos¢ + (w,) sing + (w,) -cos¢
(136)

- (w,s)m sing__

The portions of these generalized nodal rotation components due to the
curvatures of the particular solution are computed from the particular
solution functions (Ref.7). The remaining homogeneous portions are

then dual of the generalized nodal forces due to edge loads in the stretching
problem. If the matrix of particular solution generalized nodal rotations
at node k is Rkp, and that of total generahzed nodal rotations due to edge
slope is R' = {R k} then the modifications to §' for each node

k along the portlon of the boundary on which displacement conditions are
specified are as follows:



s, = 8 + B - BP (137)

2) Stress Boundary Conditions:

Stress boundary conditions take the form of the edge stress couple
(Mnn) and z component of edge effective shear (Qne) being known on a
portion or portions of the boundary. From these values and the particular

solution, obtain

b3

M. = M_ - M (138)
nn nn nn
b - _ p
Qne Qne Qne (139)

ol

Mnn and Q::e are dual of Ess and X, respectively, in the stretching problem,
and thus stress boundary conditions of the bending problem can be treated
exactly as strain boundary conditions of the stretching problem (Eqgs (96)-
(100)). For a simply-connected plate with stress boundary conditions on
only one continuous portion of the boundary, Ul’ Vl’ and Ql’ given by an
equation dual of (78), can be specified arbitrarily at node 1 (the first node)
of the portion. These quantities are dual of the rigid-body motion of the
strain boundary portion of the stretching problem, and can be introduced via
equations dual of Egs (52)-(56) for node 1 and dual of Egs (103)-(105) for
node s (the last node on the portion).

For the case of stress boundary conditions specified on more than
one portion of the boundary, a more careful, detailed study of the duality
properties (Sec. 9. c. of Ref. 7) is required. The results of such study
reveal that conditions dual of the force and moment resultant of the strain
portions are used when the stress condition portions alternate with dis-
placement conditions. For a typical stress boundary condition portion, the
quantities dual of the externally applied force and moment in the stretching

problem are

B A
Tt = Tt ot = w_’y ) W’y 140)
-W, W,
. X X
T = A _ B _ _ B _ _ B
MA w w (xA xB) Wy (yA yB) w,y (141)




-43-

where A and B are the segments immediately preceeding and following the
stress portion, and x,, Yp: Xps yg are the coordinates of the midpoints
of these segments. Since displacement boundary conditions are given on
these two segments, E' and M' are completely known.. The resulting
modifications to K' and S! are dual of Egs (109), (110), (112), (113), (114),
and (115). Ul' Vl’ and Ql are still prescribed arbitrarily on one of the
stress boundary portions.

3) Mixed Boundary Conditions:

a) Mnn and w specified: For each segment, an equation dual
of Eq (91) can be written relating M;n to the nodal values of the stress
functions. M;n is related to the specified value of Mnn by Eq (138).

From Ref. are obtained also the following relations:

i B i B _ B _ A
B _ A _- _o
W, W Ryk (143)
B _ _A _ _ A _ A _ _ ,
w \4 (xB xA) Wi (yB yA) w,y (xk xB) Ryk
(144)
- - 1
vy - ¥g) Ry

where A and B are midpoints of two adjacent boundary segments and k
is the node between them. Using Eqs (133), (134), and (142) to solve for
w}i, obtain

B B .
B _ wo - WA + W, [smd)B (xB- xA) - COS¢B (yB_yAZI_

n cos qSB (xB - xA7 + sinqSB (yB - yA)

(145)

This result is not valid for qSA = ¢B = 00, 900, 1800, 270°. These exceptions

will be treated later. Using Eqs (133), (134), and (145) in Eq (143),

obtain
g

B A B . I - _
A cos¢B wo - W +w,S [s1n¢B(xB xA) COS¢B(>’B YA)]]

w, = ¥,
n cos ¢ o cos ¢ (xB - xA) + singg (yB - yA) (1J46)
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1
Pk R,
's cosé w,gtang, + c—oys?SX (146 cont)

Finally, if nodes j and m are the nodes at the other ends of segments
A and B, respectively, and W, is expressed in terms of nodal values
of w, then Eq (146) substituted into Eq (144) yields

R, cosé, ¥ - yi) * R;lk [cos o, (%) - xj) + sing, (v, - yj)J= ﬂ(w) (147)

where ?k(w) is a function of known nodal displacements and geometric

properties, given by

(wm—wj) (sinqSBcos d)A - sin¢, cos qSB)
Ko = G -v) {° (148)
J (ym-yj)sin¢B + (xm-xj)cosd)B

_(wm-wk) Exm-xj) (sind;A sind)Bcos d)B - cos d)A) - (ym-yj)cosquBcos d’A]

!&B Eym-yj)sinqSB + (xm-xj)cosd>B]

Eq (147) is the second equation to be written for each node along the portion,
together with an equation dual of Eq (91). Eq (147) can be expressed in terms
of the unknown nodal values of the stress functions. The resulting matrix

equation for each node along the mixed boundary conditions portion is

j
> KLU Y K TR Ut (B - &) B
£4

Sn ( 1) Ut --kF (w) (149)
+ w, K! U! = it ‘_'“p""'
< ~k~ik’ ~i I’B(Mnn Mnn)B

i=m+1

+ ,Wk(Ek"'e' B

where
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I_cos¢ aUm ) | eosd (ox) sing, Gy |
W, = , (150)
AR B

The exceptions mentioned above will now be treated.

for d)A = d)B = 0 or 180°, obtain directly

s +for 0° (151)

o

Thus, Eqgs (145) and (146) can bebypassed and Eq (144) becomes directly

B__A - A = _ _ '
w w (yB yA) LR (yk yB) Ry (153)
The resulting simpler expressions for ?k(w) and Y_Vk are
Fk(w) = W T Wy C v, - yj)(wk - wj) (154)
A
Im = Yk 'l 0
W S T T (155)
0 | 0
For¢ , =¢5 = 90° or 270°, obtain directly
W
wh o= xwh +for 270° (156)
B | for 90°
- for
X S
4
so that Eq (144) becomes
B A _ A _ .
wo - W= (xB XA)W,S (xk xB) Ryk (158)
The resulting simpler expressions for Fk(w) and w, are



Foon = w - - x) - W) (159)
A
|
i 0 'xk-xm
g, = ——— (160)
o | o

Finally, the modifications to K' and $§' necessary for introduction of mixed
boundary conditions of the first type are, for each node k on the boundary

portion:

1 1 s = N
K, = WK, (G =12...] (161)
K = Wi + 2y (162)
1 ! -
K > WK -2 (163)

K{, = WKL, (=m+l,m+2...n (164)
5, )

=k "k( Mnn Mnn)k

S| >>W, (B *+ 8 - (165)

b) w, and Qne specified: For ech node, an equation dual of Eq (92)
can be written relating Q?le to the nodal values of the stress functions.
Q::r:le is related to the specified value of Qne by Eq (139).

From Ref. are obtained the following relations:
k

W}{ - w:f = - E R!. (166)

* * i=f+1 V!
k

o -l = D Ry en

Y Y isf+1 X
where w‘} .

x °F W‘}y is an average value over segment j following node j.
The nodes of the portion are numbered consecutively from 1 to s. In
addition, singlevaluedness conditions for W, o w, and w are obtained

from Eqs (166) and (167) and from Eq (189) of Ref. 7.
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E R! =0 (168)
kUK
1 =
Eka 0 (169)
g - 1 - - I =
(xk xp) Ryk (yk yp) ka 0 (170)
where the symbolE means ''sum on all nodes around the entire closed
boundary curve, " and p in any point on the boundary. And finally,
Yy Yy
there is the relation
i i i .
= +
W LA cos¢i w,y sin ¢i (171)

for all segments i along the mixed boundary condition portion.

Let q be the number of the first segment along the portion for
whichd, q f 90° or 270° (segment numbers correspond to the numbers of the
nodes they follow.) Let r be the first segment after segment q for which
d’r ?‘d) q This somewhat strange procedure is necessary because Egs,
(166) and (167) must be written between two segments that are not parallel
to the x-axis. Only in this way will Eqs (166) and (167) eventually yield
values of the two additional unknowns w?x and wfly. Writing Eqs (166)
and (167) between segments q and r, obtain

r
w, - wi = . E: R!. (172)
r
wh - wq = E R'. (173)
y 'y Xi

i=q+1

Applying Eq (171) to segments q and r, and using Eqs (172) and (173),

the quantities w?x and W?ly are obtained as
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q Wq
= ‘n_ _ q
W,y cos . Tang¢ q w,y (174)

r r
r _.q + Vo '
w,ncos¢q w,ncosd:r cos¢q(cosd>r E Ryi sing | E Rx1) (175)
_ i=q+1 i=q+1
y ; -

sin @ r -9 q)

Finally, the following equations relating the stress functions to known

quantities may be written for each node along the boundary portion:

i) for node j such that 1 <j <q:

q

-1 2 q 4 i q _ '

W, cos d’j-l(w’x z Rgri) sm(bj_l(w,y in) (176)
i=j 1=

ii) for done j such that q <j <s, except node r:

J J
j = q - 3 q 1
W cos d’j (w,X E Rgri) +s1n<i>j (w,y + E in) (177)
i=q +1 : i=q +1

iii) for node r, Eq (168) expressed in terms of the stress functions,

the particular solution, and thermal nodal rotations, if any.

To specifiy the matrix modifications necessary for the introduction of the
above equations and the dual of Eq (92), the following matrices are

defined:
!

6 —smd)j ' cosd>J. (178)

~J‘ _——— —

0 I 0

sin¢g sin¢ |  -sin¢ cos¢
. L a T _ 0 e
I
|

-~ Sin(d)r-d’q -cosd:qsind)r cosdaqcosd:r
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Q = 8 *E- B (180)

and the scalar quantity-wj' is defined:

. wgn tanqs (wr cos¢ wflncos ¢,.)

Wj = W';ln - cos ¢J. -

cos ¢ sin(¢.-¢ )
q r (181)
sin ¢,
- q
o . ¢ (Wi scos ¢q W, COs ¢r)
Then the modifications to K' and S' are as follows:
i) for row j such that 1<j<q:

Ky =By (k=1,2,...,nAj-1,5,j+1) (182)
K!. B. , - J. 183)
S5-17 -1 g (
K!l. =>>B. +J. ., +J. (184)
=il =5 =il =]
K30 By - 3 ase)

v

q v,
8 = 1 z ) +o§z Q o T T (186)

-5 (£j+,€._1)
P
where
Bk - g-;j—l 2 ~1k VGIE: —-1k (187)
i=j - i=q+1
ii) for row j such that g<j<s, except row r:
Kie = 4, (k=1,2,...,nfj-1,j,j+1) (188)
K! . A. - J. (189)
-'J:J-l$> =j-1 ~j-1
K!. = A, + J. + J. (190)
~ji =i =i-1 =
Kl o = Bja ~ 4 (191)
{ N
5 =Gl o -8 af + forondeeh o
1=q+1 i=q+l Qne
5 (zj+z 1)
\ /
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where ,

By = 'g;‘i K 092 Kl (193)

i=q+1 i=q+1

\
iii) for row r:

0 1
! ' - _
grk E K, (k=12,...nfr-1,r,r+l) (193)
0 0 ;
i
- -1
NI
1 . -
Kr,r-l LO 0 Ki,r-l *-Ifr-l (195)
- i
K = E: K! +J + J (196)
~TrT 0 0 ~'ir ~r-1 ~r
| A
0 1]
' $ ' _
Ky r+1 0 0 E.Kr,rﬂ 3. (197)
L —
0 1] .
S, = E Q, H=—g —===-— (198)
- L-o O-J. o Q:e
——u’r”’r-l)

where, in all the above modifications, 4, is given by Eq (94).

If no segment along the portion can be found such that ¢ =90° or 270°

for that segment, then all segments are parallel to the x-axis and w, Tw,

Yy
for each segment. The matrices for the above modification procedure
become

6 +1 0 49 - for 90°
=i 1o o X =0 + for 270° (199)

and the scalar-w.:i becomes
Wo- o, -
.= WS - W, (200)

and g=r=1 in the steps of the procedure.
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If a segment q is found but no segment r after q can be found

such that ¢>q7é ¢r’

the above simplified matrices and procedure, Eqs (199)

and (200), may be used for all nodes j before node q. Since all segments

after node q are parallel, i.e.,

the boundary portion from node q to the end

of the mixed boundary condition portion is a straight line, the following

simpler equation is used at all nodes j (g<j<s)

k k
j - q = - 1 1
Wi W E Ryi cos d’q in
i=gq+1 i=g+1
resulting in
w‘j - Wi
n n

¢

=]

zoimgg | cons
0" |0

S~

]

The singlevaluedness condition is used at node q, i.e.,

4) Elastic Boundary Conditions:

e

sin ¢

j

g=r.

(201)

(202)

(203)

Elastic boundary conditions for the plate bending problem are

dual of an edge beam in the plate stretching problem (Ref. 7).

correspondence is given in Table II.

The duality

Table II
Stretching Bending
EA, EI -f , -fzZ (elastic flexibility coefficients)|
ss
e M° = M°-mP
nn
o) O _ ~S_~P
X R =Q-Q .
N N -K (ds ( )

where Qs and M®° are the edge shear and couple due to support movement,

given by

S W’Sn
S
) SS

(204)
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Thus, the matrix modifications necessary for the treatment of an

elastic boundary in the bending problem are dual of Eqs (89) and (90),
using Table 2.

5) Plate Bounded by an Edge Beam:

An edge beam boundary for the plate bending problem is the dual
of elastic boundary conditions for the stretching problem (Ref. 7). To
develop the dual matrix modifications, it is necessary to define the following
coefficients (dual of the elastic stiffness constants of the stretching problem
elastic boundary):

_ (dy/ds)? (dx/ds)? |
b TET- Y ore (205)
- _ dx dyf(1l _ 1
ny fyx ds a%(GJ EI) (206)
¢ - (dx/ds)® | (dy/ds)® (207)
yy EI GJ

and the support stress functions (dual of the support movement)

US

)]

b b \
(U, *C. ) - -y )@ +P ) +C, (208)

b '
= (Vo +C7 ) - (x- xo)(Qo + on) + cy (209)

b
yo
where the subscript o refers to an arbitrary initial point on the edge beam
boundary, and C}'{ and C! are the moments at a cross-section of the beam
- - i _ p .

due to the forces (Qne Qge) and moments (Mnn Mnn) acting Sn the b(fm
portion oriented positively from point o to the cross-section. Qne and Mnn
are the edge shear and stress couple applied externally to the beam. Since
these stresses are known, along with the particular solution, the

quantities U® and VS are completely determined except for the three
quantities
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(See Ref. 7 for a definition and discussion of these quantities. )
For a simply connected plate, Uo, Vo’ and QO are arbitrary and thus
may be chosen so that the three quantities (210) vanish, leaving

u® = ¢ (211)
X

<
]

C! (212)
Y

For a multiply connected plate, the three quantities (210) still vanish on

one of the boundary curves. For the other curves, the three singlevalued-
ness conditions, Eqgs (168), (169), and (170), are used to determine the
three quantities (210) by expressing R)'(k and R;rk in terms of the flexibility
constants, stress functions U and V, and support functions through equations
dual of (66) and (67).

In matrix form, Eqgs (208) and (209) become

s _ s T '
Uy U, + Lz, + ¢ (213)
where
S = S . S = _ ] _
Uy Uy Vk} Ly [yo Ykt ¥k Xo] (214)
b
U +C !
Uo = 4 Cp = gcrict . (215)
~0 vV +C X ' Yy
o yo
z =g + PP (216)
o] (o) yAe]

In applying the singlevaluedness conditions to equations dual of (66) and (67),

it is convenient to define the following matrices and scalars:
F = Gt o) (217)

where't;i. is a flexibility matrix dual of ‘ki' and is determined from the
flexibility constants through equations dual of (69), (70), (71), and (72);

1l = T
N E ‘L-"kafkl'ik (a scalar) (218)
k



B, ~ (219)

Kk
2 =E Ly & (220)
k

Using these matrices and scalars, the solutions for the three quantities
(210) are obtained as

Us - (éIiTI:l - E}i,k) g,(é—:rgk i Z?k) Uy

(221)
TE ) I1p ( T ) \
B (65" By, - )57 ¢ (e F)
k k
: oo B B G5 - Y
Z, = A4, LR+ B, B (Uorgyp - HUS 222)
k k

The modifications to K' necessary for the inclusion of edge beam
effects are dual of Eqs (73), (74), and (75). For simply connected plates,
the modifications to $' are dual of Eq (76). However, for multiply connected
plates, le{ includes terms involving the unknown stress functions U, as is
shown by Egs (221) and (222). These terms must be moved to the left hand
side of Egs (46) and thus lead to additional modifications to K':

a) for each node i along the edge beam modify row i of K' as follows

!
to Ki, add T (223)
to K!. add T, (224)
~ii =i
to K!. add T. (225)
~1) =]
where h and j are the nodes preceeding and following node i
along the boundary, and
- Ty -1 T _ _ T
Ty AL H-1)D E: (AH" B, - &) - ALy E By (226)




b) for each node i, §1' becomes, for multiply connected plates,

! 1]
3 = & U, * Lk v 4
where
- - T -1 T 1
3 @ - ALLHID "G, + AL G, +C
B e B s ars - s
K k

(227)

(228)

(229)

(230)

(231)
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CHAPTER 4

Computer Implementation of the System

4.1 Introduction

The dual finite element for stretching and bending of orthotropic
plates must utilize the capabilities of a digital computer to be an advan-
tageous method of solution. To maximize its utility, a dual finite element
computer system should be easy to use by an engineer who is not a computer
expert. Thus the input to the system should be in the form of a problem-
oriented language related to the engineering terminology of the problem.
Also, the system should be structured in steps, or modules, that relate
to the actual engineering steps used in problem solution. The programs
for a particular step should be grouped together so that only the group
for the current solution step would necessarily be in the computer at
any given time. Finally, the data storage should be flexible so that
storage areas would be only as large as required for the current problem
step, and only data currently being used would necessarily be in the

computer at any given time.

The capabilities for creating a system with the above desirable
features are available as part of the Integrated Civil Engineering System
(ICES) (Ref. 8 and 9) developed by the MIT Department of Civil Engineering.
Specifically, a general Finite Element Analyzer exists (Ref. 1) with the
capability of easy modification and sophistication. Thus the dual finite
€lement system of this thesis was programmed as additional capabilities

to the Finite Element Analyzer.

The programming of the problem-oriented language input commands
was done in Command Definition Language (CDL) (Ref. 9), itself a problem-
oriented language. The programming of the problem solving routines was
done in ICETRAN (Ref. 9), which is FORTRAN IV (Ref. 10) with the added
capability of dynamic memory allocation. The packaging of programs
into separate groups, called load modules, and linking these groups together
to form a solution procedure is accomplished by a facility called the
linkage editor (Ref. 8 and 9).
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In the next section, the problem-oriented commands used to
solve bending and stretching problems are described in detail. This
information is all that is needed by an engineer wishing to use the
system to solve specific problems. For those engineers wishing to
modify or add to the system, detailed system documentation is given

in Appendices 1, 2, 3, and 7. This documentation consists of data
structure description, COMMON storage area map, program descrip-
tions and flow charts, and program listings. It is intended to parallel
the system documentation of the Finite Element Analyzer, which must
also be studied by anyone wishing to modify the system of this thesis.
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4.2 Description of the Problem-Oriented Language Commands

The computer capabilities developed in this thesis form a subset
of the general capabilities of the Finite Element Analyzer, which in turn
is a part of the Structural Design Language (STRUDL). Some familiarity
with STRUDL, as described in Referencel2, and a good understanding of the
Finite Element Analyzer Language (Chapter 4 of Reference 1) are

prerequisites to the use of the capabilities described herein.

Below is a complete outline of the commands that may be used to
solve problems of stretching and bending of orthotropic plates by the finite
element method. Commands marked with an asterisk (*) are part of the
general Finite Element Analyzer and are described in detail on pages 35-46
of Reference 1. Those descriptions will not be repeated here. All new
commands developed specifically for the dual orthotropic plate problem
are described in detail below,

In the command descriptions, underlined words must appear as
shown. Data items can be real (with mandatory decimal point), integer
(without decimal point), or alphanumeric (written between single quotation
marks). The acceptable modes for each node, element, or boundary name
are integer or alphanumeric, and for all other data are real unless

stated otherwise.

1. Problem Initiation
* PROBLEM 'identification' 'title'

2. Unit Declaration

* UNIT length weight angle temperature time

3. Type Specification
* TYPE type

The applicable types for this system of problems are:

DUAL PLATE STRETCHING symmetry
DUAL PLATE BENDING symmetry
DUAL PILATE GENERAL symmetry

The symmetry indicator must be either SYMMETRIC or NONSYMMETRIC
depending upon whether the global behavior (stiffness/flexibility) matrix
is symmetric or non-symmetric in its final form immediately before

solution. This symmetry is dependent upon the type of boundary conditions
specified by the user, and is given in the table below.
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SYMMETRIC NONSYMMETRIC
' displacement rigid boundary
stress
J mixed
Stretching problem: elastic
edge beam
L dislocations
( displacement stress
Bending problem: { elastic mixed
edge beam
-

If all of the boundary conditions to be specified by the user appear
in the SYMMETRIC column, then the used must specify SYMMETRIC in
the TYPE command. If any of the boundary conditions to be specified
appear in the NONSYMMETRIC column, then the user must specify
NONSYMMETRIC.

DUAL PLATE GENERAL must be specified if the plate is to be
solved for both stretching and bending.

4. Geometry and Topology |
* NODE name COORDINATES _X_vX Y vy Condition

or

* NODE COORDINATES

name X v. Y v._ Condition
X y

name X v. Y v. Condition
X y

In this system of problems, all nodes located on boundaries are
indicated by writing BOUNDARY or E_as the condition. The condition
specification for interior nodes is left blank. These requirements for
the condition specification differ from the Finite Element Analyzer, in
which only nodes with at least one restrained displacement component are
indicated by BOUNDARY or B and all other nodes are FREE, F, or
blank.
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* ELEMENT INCIDENCES

element name node1 node2 node3

element name node1 node2 node3

BOUNDARY INCIDENCES

boundary name node name

boundary name node name

This command is used to assign boundary names to the boundaries
of the plate. The name may be an integer or up to eight-character alpha-
numeric name (enclosed in quotes). Node name may be the name of any
node located on the boundary being named. A boundary is defined here
as an entire closed path bounding the plate. Thus the number of boundary
incidences specified by the user is the connectivity of the plate. This
command should not be used until after all node conditions and element
incidences have been specified. It must be used before any boundary
conditions are specified., The specification of the BOUNDARY INCIDENCES
causes the chain of boundary nodes for each boundary to be assembled.
Implicit in this assembly is the assumption that no element touches
more than one closed boundary curve, so the user must subdivide his plate

in such a way that this assumption holds true.

5. Element Property Specification
%* ELEMENT list PROPERTIES TYPE 'type' THICKNESS --
- E
EXv. PX Vpx EY v, PY pr CTX vCy G Vo DENS vh

V.

t E Ey

or

* ELEMENT PROPERTIES
list TYPE 'type' THICKNESS.Vt .

list TYPE 'type' THICKNESS vy -

where EX =Young's modulus in the global x-direction
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EY =Young's modulus in the global y-direction
PX =Poisson's coefficient in the x-direction
PY =Poisson's coefficient in the y-direction
CTX =thermal expansion coefficient in the x-direction
CTY =thermal expansion coefficient in the y-direction
G =shear modulus
DENS = material density of the element
THICKNESS = average thickness of the element
TYPE =the type of element being used, which for this
class of problems if 'FTOD', standing for flat

triangular orthotropic dual.

If only one direction of an orthotropic property is given (i.e., EX),
then the other value is assumed to be the same (i.e., EY =EX) except in
the case of PY, which is assumed to be (EX)}PX)/(EY).

The list can be either a single node identifier, a list of them, or
a specification of the form N1 TO N2 if the group of nodes is named by
successive integer numbers with N, being the lowest integer and N, the

highest.

2

6. Boundary Conditions Specification

The explicit and detailed consideration given to boundary conditions
in this thesis has made necessary the development of a distinct boundary
condition command with a set of options for explicit specification of the
various types of boundary conditions. The general form of this command
is as follows:

* BOUNDARY CONDITION 'boundary name' type (indicator)

(additional data items)

boundary portion values
boundary portion values

'boundary name' is the name of the boundary to which the particular condition
applies. The presence of an indicator and additional data items on the second
line, under the tabular heading, depends upon the type of boundary condition
being specified.
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The beginning of each line under the tabular heading specifies the
portion of the given boundary over which the condition applies. This

portion may be a single node or a range of nodes

nodel I_Q node2

The range of nodes implies all segments and nodes along the boundary
between node, and nodez, traversing the boundary in the +s direction
(outward normal vector pointing to the right) from node, to node,. In

the right hand x-y-z coordinate system used here, this direction is
counter - clockwise for an exterior boundary and clockwise for an interior

boundary.

Example:

1 TO 2 would imply nodes 7,6, 5, 4, and 3, and segments
G,F,E, D, and B, whereas

2 TO 1 would imply no additional nodes and only segment A.
1 TO 1 would imply the entire boundary.

The various types of boundary conditions, associated indicators,

and data values will now be described.

a) type : DISPLACEMENT Indicator

values: UuVvWwRwW,

In the case of a DUAL PLATE GENERAL problem (specifice previously
by the TYPE command) involving both stretching and bending, the Indicator
is used to tell the system to which problem(s) this particular boundary

condition applies, as follows:

STRETCHING (or S) — only the stretching problem
BENDING (or B) — only the bending problem
GENERAL (or G) -- both problems

The Indicator is not necessary if the problem type is not DUAL PLATE
GENERAL. Value symbols u and v are the xand y components of displace-

ment for all nodes along the specified boundary portion. Symbols w and w, n
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are the z component of nodal displacement and the negative edge rotation
for all nodes and edge segments along the specified portion. All values for
a particular portion need not be specified at the same time. Values not
specified will be taken as zero unless specified previously or subsequently
by another use of the same command.

b) type : STRESS Indicator
values : NX N, NYN QQ MNM_

The Indicator has the same function as in the DISPLACEMENT type discussed
above. Value symbols Nnx and Nny are the x and y components of the edge
stress resultant (force/unit length) along the boundary portion. The edge
stress resultant components are assumed to vary linearly between nodes
and thus the specified values apply to all nodes along the boundary portion,
including the end nodes. Symbol Qne is the z component of edge stress
resultant (also known as the effective shear) along the boundary portion.
Symbol Mnn is the edge stress couple (bending moment/unit length) whose
vector is oriented in the +s direction. A positive Mnrl corresponds to

a negative w, n’ The stress couple Mnn is assumed to be constant between
two nodes and thus the specified value of Mnn applies to all segments along
the boundary portion. Again, all values need not be specified at the same
time.

c) type : MIXED STRETCHING
values : UR u, NR Nnr ANGLE Or

d) type : MIXED BEND/1

values: Ww MM
=" = "n

e) type : MIXED BEND/2
values : Q-Qne R w, n

Value symbol u, is the nodal displacement in the direction r (in the plane
of the plate), symbol Nnr is the edge stress resultant in the direction
perpendicular to r (90° ahead of r) and Or is the positive angle from the x-

axis to the r-axis. Symbols w, Mnn’ Q ., and w, n 2re the same as explained

ne
above,
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f) type : RIGID FIXED
typer : RIGID PINNED
type : RIGID FREE
values : CHI xzs EPSILON €eq

These types of the BOUNDARY CONDITION command are used to specify

fixed strain (ess) and in-plane curvature (xzs) along a portion of the boundary.
This is equivalent to making a portion of the boundary rigid with respect to

the material of the plate, with a given shape specified by the strain and
curvature values; hence the type RIGID. The three alternate forms of the
RIGID type state whether the rigid boundary's motion is fixed, pinned, or

free with respect to the global coordinates and give the necessary accompanying
information on the line immediately below the tabular heading BOUNDARY
CONDITION, as follows:

fixed- : Ul uy V_lv1 Rl w

Symbols uy and v, are the x and y components of imposed displacement of
the first node (nodel) of the rigid boundary. Symbol w is the rotation of
the edge segment connecting node1 to the next node in the +s direction.

pinned : XPx YPy UPu VPv MPM
- P p— pT—/ P P

Symbols xp and yp are the x and y coordinates (global) of the pinned point
p (not necessarily any of the nodes) about which the rigid boundary is free
to pivot. Symbols up and vp are the imposed displacements of the pinned
ppint. Symbol Mp is the moment applied externally to the rigid boundary
about point p. Mp, as a vector, is parallel to the +z axis of the right-handed

x-y-z coordinate system.

free : XPx YPy FXF_FYF_MPM
=Tp = p="x=="y P

Symbols FX and Fy are the x and y components of force applied externally

to the rigid boundary. The other symbols are the same as for the pinned
case,.

The RIGID type of boundary condition applies only to the plate

stretching problem and any values not specified will be taken as zero.

Examples:

BOUNDARY CONDITION 'OUTER' RIGID PINNED
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XP 3l. YP 2.7 UP.02 VP .12 MP 220,
'CORNER1' TO 'CORNERZ2'

This example specifies a pinned rigid boundary with no strain on
in-plane curvature, i.e., it has the shape of the plate boundary before
deformation.

BOUNDARY CONDITION 'INNER' RIGID FREE
XP 0. YPO. FX0. FYO0. MPO.
21 TO 21

This example could be used to specify a rigid, unloaded "plug"
inserted into the entire hole bounded by 'INNER'.

g) type : ELASTIC
values : USu® VS v® KXX k. KXYk KYXk KYYk
—_—— — —_— XX Xy yX yy

WS w° RS w® KZZ k  KSS k
— — n Y44 SS

This type specifies that the entire boundary 'boundary name' is

elastically supported. Symbolsk__, k., k , k_, k _=1/f , and

xx' xy’ Tyx’ Tyy zz zZZ
kSS = l/fSs are the elastic constants over the specified boundary portions.
Symbols us, vs, ws, and W,Sn are the support movements (3 components of
displacement and an edge rotation) along the specified boundary portions.
Only those values pertaining to the problem to be solved need be specified.
If the sum of all specified boundary portions does not add up to the entire
boundary, portions not specified will assume zero values of all relevant

data.

h) type : EDGE BEAM
values : NXN, NYN EBEIZI MM, QQ INI JJGG

This type specifies that the entire boundary 'boundary name' is an edge

beam. Symbols E and G are the Young's modulus and shear modulus of the
beam material. Symbols IZand In are the moments of inertia of the edge

beam about the z and n axes, respectively, and J is the torsional constant,
as shown below:

EDGE BEAM

*— PLATE
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Symbols Nnx and Nny are the x and y components of the stress resultant
(force/unit length) applied externally to the beam, Qne is the effective
shear applied externally, and Mnn is the externally-applied edge moment
intensity. Again, only pertinent values need be specified and all values

along portions not specified will'assume zero values.

In addition to the above boundary condition command, there are
a number of so-called standard boundaries that may be more easily specified
with the following commands:

SIMPLE SUPPORT 'boundary name' node1 TO node,

This support is the plate equivalent of a pin-ended linear member,
i.e., it fixes displacement but not rotation. Thus the command implies

u=v=w= Mnn = 0. over the boundary portion node1 to node,.

IN-PLANE ROLLER 'boundary name' node, lgnode2

This support allows complete freedom of motion in the plane of the
plate but restricts displacement perpendicular to the plate. Thus the
command implies N__ =N__=w =M__ =0, over the boundary portion

nx ny nn

node1 to node2 .

NORMAL ROLLER 'boundary name!' node, TO node2

This support allows complete freedom of motion perpendicular
to the plate but restricts displacement in the plane of the plate. Thus the

command implies u =v = Q

=M __ =0. over the boundary portion node
ne nn 1

to nodez.'

CLAMPED EDGE 'boundary name' node1 TO node2

This support restricts all displacement and rotation of the plate
edge. Thus the command impliesu = v =w =W, n- 0. over the boundary

portion node1 to nodez.

FREE EDGE 'boundary name' node, to node2

This command specifies a totally unrestrained edge, not acted upon
by any external forces or moments, thus implying N _ = Nny = Qne = Mnn =0.
over the boundary portion node; to nodez.
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7. Dislocations

In multiply-connected plates, dislocations in the plane of the plate
may be specified by the following command:

DISLOCATION DU éu® DV 6v° ROTATION 6,,°
PATH node

1 node2 . . . .noden

Symbols 6u°, 6v°, and 6u° are the components of rigid body motion
used to bring the positive face of the dislocation (see section 3.1-7) into
coincidence with the negative face, referred to the global coordinate reference
frame. The path of the dislocation extends from nodel, located on an
exterior boundary, to noden, located on an interior boundary. Each node
along the dislocation must be connected to the previous one by an element,

i.e., the dislocation line must always coincide with element edges.

8. Loading Specification
* LOADING 'identification' 'title'

9. Nodal loads
* NODE list LOADS FORCE X FX YF

or

* NODE LOADS
list FORCE X F_YF

The nodal load components Fx and F_ are the only ones applicable
to this class of problems since loads perpendicular to the plate, causing
plate bending, are specified indirectly through the Particular Solution

commands described below.

10. Line Loads

The line load tabular command specifies a line load in the plane
of the plate along a path coinciding with element edges and with force
intensity components varying linearly between nodes along the line. Thus
the force intensity can be completely specified by its values at the nodes
along the line. The form of this command is as follows:
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LINE LOAD

node, FORCE Xf Y I

node, FORCE Xf Y f{

2

node FORCE Xf Y f
n——==="x="y
The nodes must be specified in order along the line. Data labels
may be omitted if the data is given in the order shown above.

11, Gravity (or Dead) Load
The load due to the weight of the plate material (dead load) can

be specified simply by specifying the orientation of the gravity vector with
respect to the global axes. This specification is meaningless for a pure
bending problem, however, because the component of gravity perpendicular
to the plate must be specified indirectly through one of the Particular
Solution commands described below. The form of the dead load specification

is as follows:

GRAVITY LLOAD ANGLE-X Ox ANGLE-Z GZ

Symbols Gx and GZ give the orientation
of the gravity vector with respect to
the x and z global axes, as shown at
the left. The dead load on each

element is then determined from the

greviouslx specified element thickness

and density.

12. Element Loads
* ELEMENT list LOADS component type values
* ELEMENT list TEMPERATURE LOADS component value
or
* ELEMENT LOADS
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* ELEMENT TEMPERATURE LOADS
list component value

The type can be either LINEAR or UNIFORM and the applicable
components are FORCE X and FORCE Y for the element loads.

13. Particular Solution for the Bending Problem

In the dual finite element stress function method for plate bending,
loads perpendicular to the plate (which contribute to the bending of the
plate) are specified indirectly through the two functions KX and Ky (see
page 20 or reference 7). Except in the case of a uniform load over a
homogeneous plate, the nodal and optionally also the element-centered
values of KX and K_ must be explicitly specified by the user. These values
are used to obtain an approximate integration of Kx and Ky over the area
of each element. If the element-centered value is prescribed, a pyramidal
approximation is used for the integration. Otherwise, a linear approximation

is used.

i
PYRAMIDAL LINGAR

Since the particular solution is the equivalent of a load for the
bending problem, it applies to the most recent LOADING specification
given. Thus a number of different particular solutions may be specified
for the bending problem, just as a number of different loading conditions
may be specified for the stretching problem. The form of the particular

solution specification is as follows:

BENDING PARTICULAR SOLUTION
NODES list KX K KY K_

ELEMENTS list KX K, KY K
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END

The list may be a single entry or a string of up to ten entries,
separated by commas or blanks. The word END must appear on the

line following the last tabular entry.

In the case of a uniform load over a homogenous plate, a standard

particular solution may be specified by use of the following command:

PARTICULAR SOLUTION UNIFORM LOAD P, Cec

Symbol P, is the value of the uniform load in the -z direction.
Symbol c is the proportion of the load taken by a family of strips in
the x-direction (see page 20 or reference 7 for a more detailed expla-
nation). In the determination of the standard particular solution, the system
"fits'' the plate shape into a rectangle whose edges are parallel to the
global x and y axes and are simply supported. Thus the proportionality
constant (0. <c < 1.) should reflect somewhat the plate's proportions in
the x and y directions as well as the known qualitative behavior of the plate
in bending. y

|
SO
|
I

° — X

14. Loading List Specification
* LOADING LIST '1oading1' '1oading2' .

* LOADING LIST ALL
* LOADING LIST ALL BUT 'loadingl' 'loadingz'

15. Analysis Command
* FINITE ANALYSIS

16. Output Command
* LLIST STRESSES, STRAINS, PRINCIPAL STRESSES,
PRINCIPAL STRAINS, NODAL DISPLACEMENTS, ALL
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CHAPTER 5

Conclusions and Recommendations

The dual finite element stress function method discussed in this
work has been shown by Elias ((Ref. 7) to be equal to, or better than,
the displacement method for approximating the exact answers to some
plate bending problems. The dual stress function method involves only
two equations per node whereas the bending displacement method involves
three equations. This fact alone makes the stress function method desireable
from a computer time consumption viewpoint. When fully operational, the
computer system developed in this thesis should serve as a good tool for
continuing the study of the stress function method and its comparison to
the displacement methods.

There are, .however, certain characteristics of some of the
bending problem boundary conditions that may detract from the effective-
ness of the dual stress function method. In the stretching problem, all
but one of the boundary conditions discussed result in only additions to
the existing non-zero elements of the global structural stiffness matrix,
thus maintaining the symmetry. Only strain boundary conditions result in
certain rows being replaced without changing the corresponding columns,
thus destroying the symmetry of the global stiffness matrix and requiring
the entire matrix to be stored in the computer instead of just the lower half.
This change in storage in turn requires a different solver routine to be
used. In the bending problem, stress boundary conditions are dual of
strain boundary conditions in the stretching problem and thus result in a
non-symmetric global flexibility matrix. Since both types of mixed
boundary conditions for the bending problem also involve part of the
stress boundary conditions formulation, they, too, result in non- symmetric
global matrices. In addition, the support stress functions U®° and Vv® of
the edge beam boundary conditions for the bending problem are not known
quantities specified by the user, as are their dual quantities v® and v°
of elastic boundary conditions of the stretching problem. Instead, they
hmust be determined by a somewhat complicated procedure (pages 52-55)
that also results in a non-symmetric global matrix. The possible adverse

effects of the non-symmetric storage and solver requirements of some of
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the bending problem boundary conditions should be investigated.

The flexibility and ;modularity of the system developed in this work
will allow it to be modified and extended as the need requires. Routines
for specifying standard plate shapes, sizes, and finite element discreti-
zations could be added easily, as well as more types and options of boundary
conditions, more types of standard particular bending solutions, and
more sophisticated complete output routines. At the time of this writing,

the computer system developed in this thesis is not completely debugged and
operational,




10.

11.

12,
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APPENDIX 1

Additions to the Finite Element Analyzer Data Structure

Appendices 1, 2, 3, and 7 are intended to serve as a detailed
description of the internal characteristics of the programming
capabilities developed in this thesis. Since these capabilities are
a subset of the general Finite Element Analyzer programming system,
the detailed documentation of the Finite Element Analyzer (Reference 1 s
pages 53-105) should be understood before proceeding to the documenta-
tion contained herein. For ease of cross-reference, the numbering of
appendicies in this thesis corresponds to that of Reference 1 -
A. 'BDID' - One level double word array to store the alphanumeric

identification of a boundary (8-character boundary
name). The integer IBC@N is the length of this array.
The internal number of a boundary is its position in
the 'BDID' array.

Dynamic array BDID

Length = IBCPN

DEFINE BDID, 5, BOUBLE, STEP = 1

Defined in Subroutine BDINIT

B. 'BDCOND' -~ Three level full word array of boundary conditions
referenced by boundaries, nodes in order around the

boundary, and data.

BDCOND(I,J,1) = internal node number (input phase)
BDCOND(I,J,2) = type of boundary condition for the
stretching problem
= displacement

= stress

elastic boundary
edge beam

mixed
rigid-fixed

rigid-pinned

f
W N oy W N =

rigid-free
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BDCOND(I, J,3) = type of boundary condition
: for the bending problem
=1 displacement
=2 stress
=3 elastic
= 4 edge beam
=5 mixed/1
=6 mixed/2
BDCOND(I,J,4) = gpecified values of the boundary
BDCOND(I,J,5) conditions, located as shown in
. the table below.
Storage Boundary Condition Type
location 1 9 q 4 o & 7 ]
S
(1,J3,4) uj Nnx u E Nnr Uy up Fxp
s
(1,J,5) vj Nny v Iz u vy vp pr
(x,J,6) kxx N o, Wy xP xp
1,J3,7 k N
(1,3,7) Xy y Yo Y5
1,J,8 k M M
(1,3,8) yx P P
(1,J,9) kyy X,s rxzs Xzs
(1,J,10) 8ss : 8ss 6ss
s
(1,J,11) Wj Qne w Qne wj Qne
s
(1,3,12) LI Mnn L Mnn Mnn Vs
(1,J3,13) Kzz In
(1,J,14) KSS J
(1,J,15) G

If the problem is only bending (IPROB = -1) locations (I,J,11) through
(1,J,15)are shifted up to (I,J,4) through (1,J,8).




C.

D.

'DISL@C'

'"PBS@LN'
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Dynamic Array BDC@ND
DEFINE BDCOND, 5, P@INTER, STEP = 1

DEFINE BDCOND(I), 10, POINTER, STEP = 10

DEFINE BDCOND(I,J), 5, FULL, STEP =5

Defined in Subroutines BDINIT and NBDASS
Two level full word array of dislocations,
appearing in the order specified, i.e., DISL@C(3,N)
refers to the third dislocation specified by

the user. The data is stored as follows:

DISL@C(I,1) = §u°
(1,2) = &°
(1,3) = G
(1,4) = position in JTID of first node on

the dislocation

(1, j+3)
(I,n+3)
Dynamic array DISL@C
DEFINE DISL@C, 5,POINTER, STEP = 1
DEFINE DISL@C(I), 10, FULL, STEP = 10
Defined in Subroutine DISLCP

jth node on the dislocation

nth (last) node on the dislocation

Three level full word array of nodal values of
the particular bending solution functions Kx
and Ky' Referenced by loadings, nodes, and data.
PBS@PLN(I,L,1) =K,
PBS@LN(I,L,2) =Ky
Dynamic array PBS@LN
Length = LEXTN

Length = 2
DEFINE PBSOLN, LEXTIN, POINTER, STEP = 5

DEFINE PBSOLN(LEXIN), JEXTN, POINTER

DEFINE PBSOLN(LEXTN,I), 2, FULL

Defined in Subroutine PARTIC or STDPSL



E.

F.

G.

'PBS@LE'

'IPRTIC"

'SFTEMP'
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Three level full word array of element-centered
values of Kx and Ky (if IPRTIC(LEXTN)=0) or

of exact integrals of Kx.and Ky over the

surface area of the element (if IPRTIC(LEXTN)=1).
Referenced by loadings, elements, and data.
PBS@LE(L,I,1) Kx orS.KXdAi

PBSQLE(L,I,2) =K or SKydAi

Dynamic array PBS@LE
Length = LEXTN
Length = JEXIN
Length = 2
DEFINE PBSOLE, LEXTN, POINTER, STEP =5
DEFINE PBSOLE(LEXTN), JEXTIN, POINTER
DEFINE PBSOLE(LEXTN,I), 2, FULL
Defined in Subroutine PARTIC or STDPSL
One level half word array indicator of the type
of particular bending solution specified by the
user ofr each loading condition.

IPRTIC(L) =0 nodal and element-centered
values specified by the
user explicitly.

IPRTIC(L) =1 standard solution for uniform
load and homogeneous plate
requested by the user.

Dynamic array IPRTIC

Length = LEXTIN

DEFINE IPRTIC, 5,HALF, STEP = 5

Defined in Subroutine PARTIC or STDPSL
Three level full word array of the nodal values
of the stress functions for each loading.
Referenced by loadings, nodes, and data.
SFTEMP(L,I,1) = U;

SFTEMP(L,I1.2) = V;

Dynamic array SFTEMP

Length = LEXTN




H.

I.

'RNDTEM'
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Length = JEXTN
Length = 2
DEFINE SFTEMP, LEXTN, JEXIN, 2
Defined in Subroutine STNBKS
Three level full word array for temporary storage
of nodal displacements during the bending
solution phase of a general plate problem.
Referenced by loadings, nodes, data.
RNDTEM(L,I,1) =u,
RNDTEM(L,I,2) =V,
Dynamic array RNDTEM
Length = LEXTN
Length = JEXTN
Length = 2
DEFINE RNDTEM, LEXTN, JEXTIN, 2
Defined in Subroutine STNBKS

Scalars in C@MM@N:

1.

IPROB = indicator of problem type and solution

phase
=0 stretching problem
=1 bending problem
= 2 general plate problem (both
stretching and bending)
= + stretching solution phase

= - bending solution phase

IBCON = connectivity of plate (number of closed
boundary curves

NSYM = indicator of type of stiffness matrix
to be used in solution

1 symmetric

2 non-symmetric
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APPENDIX 2
Revised and Extended C@MM@N Map

This appendix presents the complete map of CIMMPN storage
area used by the dual finite element plate analysis subroutines.
The map is an extension of the Finite Element Analyzer C@MM@N map

found in Appendix 2 of reference

Name Rel. Add. Displacement Remarks

Hex. Dec.

ICES C@¢MM@N POOL

QQDUB(2) 1-2 000 0000

ICOM 3 008 0008

IERROR 4 00C 0012

ICOML 5 010 0016

QQcoM(75) 6-80 014 0020

SCRATCH C@MM@N POOL

Il to 136 81-116 140 0320

Tl to T36 117-152 1D0 0464 CDL Scratch Common

Dl to D10 153-172 260 0608 gzztlénioigsglo are

TEMP1(9) 173-180 2BO 0688

NSOL 181 2D0 0720 Number of nodes at
which displacements are

TEMP2(48) 182-230 2D4 0724 not fully prescribed

"LEXT - 231 398 0920 Independent active
loadings

(pointer) 232 39C 0924
POINT1(4) 233-236 3A0 0928
IBAND 237 380 0944 Semibandwidth for hyper
(pointer) 238 384 0948 ;Zii?is of stiffness

IFDT 239 3B8 0952 bit picture of stiffness

matrix

(pointer) 240 3BC . 0956




Name

KDTAG

(pointer)
KOFDG

(pointer)
IOFDG

(pointer)
KPPRI

(pointer)
FCMAT

(pointer)
ICUREL

(pointer)
IREL1

(pointer)
POINT2(2)

FILL1(6)
ISCAN
FILL2(52)
CFLEN

CFWT
CFANG
CFTEMP
CFTIME
FILL3(10)

LDID
(pointer)

DUM1

LEXTN

LTYP

(pointer)

Rel. Add.

241

242
243

244
245

246
247

248
249

250
251

252
253
254
255-256

NON-DICTIONARY

257-262
263
264-315
316

317
318
319
320
321-330
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Displacement

hex. Dec.
3C0 0960
3C4 0964
3C8 0968
3CcC 0972
300 0976
3D4 0980
3D8 0984
3DC 0988
3E0 0992
3E4 0996
3E8 1000
3EC 1004
3F0 1008
3F4 1012
3F8 1016
CAMM@N POOL

400 1024
418 1048
41C 1052
4EC 1260
4F0 1264
4F4 1268
4F8 1272
4FC 1276
500 1280

DICTIONARY C@MM@N POOL

331
332
333
334
335
336

528 1320
52C 1324
530 1328
534 1332
538 1336
53C 1340

Remarks

Diagonal submatrices
of stiff. matrix

Off-diagonal submatrices
of stiff. matrix

Non-zero submatrices in
each row of stiff. mat.

Load vector and result
vector

Non-symmetric stiffness
matrix elements

List of non-zero rows
in each hyper column
of non-sym. stiff. mat.

Indicator of non-zero
columns of each row of
non-sym. stiff. matrix

Dummy
Scanning mode indicator
Dummy

Conversion factor for
length
Conv. factor for weight

Conv. factor for angle
Conv. factor for Temp.
Conv. factor for time

Dummy

Loading names

Dummy
Total number of loadings

Loading type



Name

LDLIST
(pointer)

LDTLE
(pointer)

JTID
(pointer)

JEXTN
JTYP
(pointer)

DUM2(2)

JTXYZ
(pointer)

JTLOD
(pointer)

FILL4(43)

NJ

DUM3

NLDSI

JF

ID
FILL5(5)
JINT

(pointer)
FILL6(26)
ELID

(pointer)
DUM4(2)
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Rel. Add. Displacement
Hex. Dec.
337 540 1344
338 544 1348
339 548 1352
340 54C 1356
341 550 1360
342 554 1364
343 558 1368
344 55C 1372
345 560 1376
346 564 1380
347 568 1384
348 56C 1388
349-350 570 1392
351 578 1400
352 57C 1404
353 580 1408
354 584 1412
355-399 588 1416
400 63C 1596
401 640 1600
402 644 1604
403 648 1608
404 64C 1612
405-409 650 1616
410 664 1636
413 670 1648
414-439 674 1652
440 6DC 1756
441 6EO .1760
442-443 6E4 1764

Remarks

Loading list

Loading titles

Node names

Total number of nodes

Node type

Dummy

Node coordinates
Nodal loads

Dummy
Number of active nodes
Dummy

Number of independent
loading conditions
Number of degrees of
freedom

Problem type
Dummy

Input to analysis node
correspondence

Dummy

Element names

Dummy



Name

ELPROP
(pointer)
ELTOP
(pointer)
ELOADS
(pointer)
DUM5 (10)
ELINT

(pointer)
ELEXT

(pointer)
NBXTEL

NBEL

NSYM
NGEN
ELSTDE
ELSTDG
ELSTCT

ELSTDS
ELSTPO

FILL7(4)
ELSTMT
(pointer)
NODISP
(pointer)
STRAIN
(pointer)
STRESS
(pointer)
PRSTRN

(pointer)
PRSTRS

(pointer)
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Rel. Add. Displacement
Hex, Dec.
444 6EC 1772
445 6F0 1776
446 6F4 1780
447 6F8 1784
448 6FC 1788
449 700 1792
450-459 704 1796
460 72C 1836
461 730 1840
462 734 1844
463 738 1848
464 73C 1852
465 740 1856
466 744 1860
467 748 1864
468 74C 1868
469 750 1872
470 754 1876
471 758 1880
472 75C 1884
473-476 760 1888
477 770 1904
478 774 1908
479 778 1912
480 77¢C 1916
481 780 1920
482 784 1924
483 788 1928
484 78C 1932
485 790 1936
486 794 1940
487 798 1944
488 79C 1948

Remarks

Element properties

Connectivity table

Element loads

Dummy

Input to analysis ele-
ment correspondence

Analysis to input ele-
ment correspondence

Total number of ele-
ments

Number of active ele-
ments

Symmetry indicator

General plate indicator
Standard Young's modulus
Standard shear modulus

Standard coefficient
of thermal expansion
Standard density

Standard Poisson's
coefficient
Dummy

Element stiffness

Nodal displacements

Element strains

Element stresses

Element principal
strains

Element principal
stresses



Name

FILL8(5)
IPROB
IBCON
BDID
(pointer)
BDCOND
(pointer)
DISLOC
(pointer)
PBSOLN

(pointer)
PBSOLE

(pointer)
SFTEMP

(pointer)
RNDTEM

(pointer)
IPRTIC

(pointer)

Rel. Add.

489-493
494
495
496
497
498
499
500
501
502

503
504

505
506

507
508

509
510

511
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Displacement

Hex. Dec.
7A0 1952
7B4 1972
788 1976
7BC 1980
7CO 1984
7C4 1988
7C8 1992
7CC 1996
7D0 2000
7D4 2004
7D8 2008
7DC 2012
7EO0 2016
7E4 2020
7E8 2024
7EC 2028
7F0 2032
7F4 2036
7F8 2040

Remarks

Dummy
Problem phase indicator
Boundary connectivity

Boundary names

Boundary conditions

Dislocations

Nodal values of par-
ticular solution

Element values of
particular solution

Nodal values of the
stress functions

Temporary array of
nodal displacements

Indicator of data in
array PBSOLE
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APPENDIX 3

Program Documentation

A3-1 General Organization

The general organization of the programming system is the same
as that of the Finite Element Analyzer, as shown in Figures A3-1,
A3-2, and A3-3 of Ref. 1., with the following load modules substituted

for the original Finite Element Analyzer modules:

Module replaces Original Module
STINGEN ‘ STEGEN

STNSAS STEASS*

STNBCM STJPRC

STNSSL STSLVR*

STNBKS STEBKS

(* indicates modules replaced only in the case of a non-symmetric

global stiffness/flexibility matrix)

AE-2 Input Programs Documentation
a) CDL Programs:

1. BOUNDARY INCIDENCES command

. MTRAN (a CDL subroutine)

. BOUNDARY CONDITIONS command

. STABC (a CDL subroutine)

. SIMPLE SUPPORT command

IN-PLANE ROLLER command

. NORMAL ROLLER command

. CLAMPED EDGE command

. FREE EDGE command

.LINE LOAD command

.GRAVITY LOAD command

.BENDING PARTICULAR SOLUTION command

.LPROC (a CDL subroutine) .

.XROUT (a CDL subroutine)
15.DISLOCATION command

b) ICETRAN and FORTRAN input programs

O 00 N O Ut B~ W DN

= =
S~ LW N =2 O



Program Name:
Author:

Date:
Language:

Program Description:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:
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BDINIT

D. A. Nagy

May 1967

ICETRAN

BDINIT processes the tabular heading
command BOUNDARY INCIDENCES. It initial-
izes the connectivity (boundary)

counter IBC@N and defines the array of
boundary names (BDID) and the array of
boundary chains (BDC@ND). It checks

the common variable ID to determine

what type of problem the user has specified,
and sets IPROB accordingly:

IPROB=0 plate stretching
(plane stress)

IPROB=-1 plate bending

IPROB=+2 general plate
(both stretching and
bending)

It is called by CDL

STRUDL subsystem

BOUNDARY INCIDENCES COMMAND

None

22 cards ICETRAN

808 bytes object program

BDINIT

None

None

1f the user specified some TYPE other
than PLANE STRESS, PLATE BENDING, or
GENERAL PLATE, the following message

is printed: 'BOUNDARY INCIDENCES COMMAND
VALID ONLY FOR PLANE STRESS, PLATE BEND-
ING, AND GENERAL PLATE PROBLEMS--ERROR.'
ISCAN is set equal to 2.




|
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IBCPN=IBCON + 1

k3

Store boundary name

Y

Define boundary chain
subarray BDC@ND(I)

Y

first node in

Locate node number of

chain

Is it actually
boundary node?

yes

;]qk

yes

lon>y

i

no—-ﬁ
message

Print error

Print error
message

current node

®1 Define subarray of
boundary conditions for

BDCND (I,J)

Y

Store node number in first
location of BDC@ND (I,J)

!

by looping on

Locate an element contain-
ing current boundary node

incidence 1list

the element

located?

yes

Return

Print error
message

boundary node
direction)?

Does it contain the next

(in the +s

yes

Check if the next

node is the first

node of the chain,
i.e., if the chain
is completed.

no yes

no

no-.t
I

Continue looping
‘on element incidence
list to find another

element

o>

yes =

NO eneweme——

Print error
message

Next node becomes
current node

NBDASS Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:
Usage:

Program Qutput:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:
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MTRANS

D. A. Nagy

July 1967

FPRTRAN 1V

MTRANS translates an integer of four or
less digits into alphanumeric repre-
sentation.

It overlays upon the double word D10 the
two integers I(1) and I(2). Then it performs
integer arithmetic on I(2) to create the
appropriate EBCDIC (extended binary
coded decimal interchange code)
representation for the digits of the
integer being translated.

It is called by CDL

STRUDL subsystem

various input commands

None

26 cards FPRTRAN IV

808bytes object program

BDINIT, PARTIC

None

None

None
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Overlay D10 with
1(1) and I(2)

Place EBCDIC code for
4 blanks in I(1)

Determine the digit
in thousands position

=07 yes

no

|

Place blank in the
thousands position
in I(2)

Place EBCDIC code for
digit in thousands
position of I(2)

{

Set INDIC=0

'

Set INDIC=1

i

Loop on remaining 3 l‘

digit positions

{

Determine value of digit

yes

[ 1

Place EBCDIC code for
digit in I(2)

INDIC=1

no

]?

Place blank in digit
position in I(2)

e

Continue

MTRANS Flow Chart



Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:

Program Length:
Load Module:
Linkage from Programs:

Linkage to Programs:

Error Procedure:
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NBCCP

D. A. Nagy

May 1967

ICETRAN

NBCCP is the boundary conditions commands
processor. It manages the storage of
boundary condition values in their
appropriate locations in the dynamic
array BDCOND.

It calls GETNOS to obtain the necessary
information about the boundary portion
being processed. It then branches to
the appropriate routine for whatever
type of boundary condition was specified.
The branch is made on an indicator (Il)
set by CDL. 1In each routine, it makes
appropriate use of STBV to store the
boundary condition values and set
indicators.

CALL NBCCP, or called by CDL

STRUDL subsystem

processing of boundary condition commands
None

224 cards ICETRAN

4824bytes object program

BDINIT

NSCCP

GETNOS

NSTBV

None
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|

Call GETNOS

Y

dition d
if probl
bending

Shift boundary con-

ata values
em is only

'

Branch on value of Il

——/

3 4

Routine for Routine for
processing processing
displacement stress boun-
boundary dary condi-
conditions 1 ] tionms

) 1 ) ||

{ Call NSTBV |

[call nsTBV

L~

Routine for
processing

mixed boun-
dary condi-
Ltions -

——

Routine for
processing
rigid boun-
dary types
h_{__TJ.

| call NSTBV |

| call nstBv ]

Routine for Routine for
processing processing
elastic boun- edge beam
dary boundary

Y Y

Call NSTBV

'

NBCCP Flow Chart

=




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program OQutput:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:
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GETNOS
D. A. Nagy
May 1967
ICETRAN
Given a boundary name and the names
of two nodes on that boundary, it
locates the boundary number, the node
numbers, and the positions of the two
nodes on the boundary chain.
It loops on BDID to find the boundary
number (position in BDID). It loops
on JTID to find the node numbers, and
then it loops through the boundary
chain to locate the positions of the
two node numbers.
CALL GEINOS(D1l, D2, D3, I, J, K, JG, KC)
where Dl=the boundary name
D2=first given node name
D3=second given node name
J =number of first given node
K =number of second given node
I =boundary number
JC=position of first node in the
given boundary chain
KC=position of the second node
STRUDL subsystem
processing of boundary condition commands
None
59 cards ICETRAN
1704bytes object program
BDINIT
NBCCP
None
1f boundary 'Dl' was not previously

defined, the following message is printed:




Error Procedure:
(continued)
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'BOUNDARY 'D1' NOT PREVIOUSLY DEFINED--

ERROR. '
If either node 'D2' or 'D3' was not

previously defined, the following
message is printed:

'NODE 'name' NOT PREVIOUSLY DEFINED--
ERROR,,

In all the above errors, ISCAN is set

equal to 2.
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|

Loop on BDID to find
boundary number from
given name '

found? ' —F1 O o4 Print error
message

yes

Loop on JTID to find
first node number from
given node name

found? no o4 Print error
message

¥

L ;

Loop on JTID to find
last node number from

given node name 4
found? no ISCAN=2
Return
es
yi +

Loop through BDCOND to
find first node's posi-
tion in boundary chain.

found? no Print error
message

yes
)

Loop through BDCOND to
find last node's posi-
tion in boundary chain.

<:E§5§E§E:::~ no

yes Return

GETNOS Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:
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NSTBV

D. A. Nagy

May 1967

ICETRAN

NSTBV transfers boundary condition

values from a dimensioned array to

the dynamic array BDCOND(IB) for a

string of specified nodes and sets the
boundary condition indicator BDCOND(IB,
NODE, 2 or 3). It then adds the

integer to JTYP(NODE) necessary to in-
dicate that boundary conditions have been
specified for the node.

It loops through the boundary chain

nodes consecutively, performing the

tasks mentioned above. At each node,

it loops through the dimensioned array,
transferring the values.

CALL NSTBV(IB, JP, KP, IEND, ARRAY, ICHNG)

where IB =boundary number
JP =first node position
KP =last node's position
IEND =number of values to be
transferred

ARRAY =dimensioned array of values
to be transferred
ICHING =integer to be added to JTYP
for each node
STRUDL subsystem
processing of boundary condition commands
None
20 car&s ICETRAN
1000 bytes object program
BDINIT
NBCCP
None

None
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|

Loop through boundary
chain IB from N=node
position JP to node

position KP

JTYP (NODE)=JTYP (NODE)+ICHNG

L

Loop through dimensioned
array from I=1 to IEND

1

BDCOND(IB,N,I+1)=ARRAY(I)

{

RETURN

NSTBV Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage To Program:

Usage:

Program Qutput:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:

-99-

NSCCP
D. A. Nagy
May 1967
FARTRAN IV
NSCCP is the preliminary processor for
the following commands:

SIMPLE SUPPORT

HORIZONTAL ROLLER

VERTICAL ROLLER

CLAMPED EDGE

FREE EDGE
It zeroes all values in the array of
boundary condition values. It then
branches to the appropriate routine
for the command that called it (indi-
cated by the value if I1). Each routine
sets the appropriﬁte indicator(s) and
calls NBCCP to process the boundary
conditions implied by the command that
called NSCCP.
It is called by CDL
STRUDL sybsystem
standard boundary type commands
(see list above)
None

cards F@PRTRAN IV

bytes object program

BDINIT
None
NBCCP

None -
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l

Zero the array
of data values

!

Branch on value of
I1

1 2 3 Q\\\\‘
Simple Support: Horizontal Clamped Edge:
Set indicator Il Roller: Set Il for
for displacement Set I1 for displacement
boundary condi- stress b.c. b.c. (both
tions (stretching (stretch- stretching and
problem) ing prob.) bending)
Call NBCCP I""’""Call NBCCP

Set Il for mixed
boundary condi=
tions (bending
problem)

k|

Call NBCCP

Return

Free Edge:
Set Il for
stress b.c.

ing)

)

{3

Call NBCCP

Vertical Roll
Set 11 for di
placement b.c
(stretching
problem)

er:
S~

Y

Call NBCCP

:

Set Il for str
boundary condi
(bending probl

ess
tions
em)

t

Call NBCCP

NSCCP Flow Chart

.| Return

(both stretch-
ing and bend-




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:
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DISLCP

D. A. Nagy

May 1967

ICETRAN

DISLCP processes the DISLOCATION
command,

It checks if the command is appropriate,
i.e., if the problem is one of plane
stress in a multiply-connected plate.
It checks if the pointer array of
dislocations is defined, and if not,

it defines it. It determines the number
I of dislocations already specified,
defines the subarray DISLOC(I+l) and
stores the specified information in it.
It is called by CDL

STRUDL subsystem -

DISLOCATION command

None

52 cards ICETRAN

1744 bytes object program

PARTIC

None

None

If the plate is simply-connected,
the following messages are printed:
'"DISLOCATION COMMAND APPLIES ONLY TO
MULTIPLY-CONNECTED PLATES.'

'COMMAND WILL BE IGNORED.'

If the problem is one of plate
bending only, the following messages are
printéd: '"DISLOCATION COMMAND APPLIES
ONLY TO THE PLANE STRESS PROBLEM.'
'COMMAND WILL BE IGNORED.'




Error Procedure:

(continued)
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If any of the nodes on the dis-

location path were not previously

defined, ISCAN is set equal to 2 and

the following message is printed:

'NODE 'name' WAS NOT PREVIOUSLY DEFINED--

ERROR. '

l

Is the plate simply connected?

L
no

|

yes

]

Print error

messages ]

Is the problem bending only?

no Y83 = PTint error

{ messages
Has the array of dislocations
been defined?

yes 36 Return

. 2

Define DISL@C

Determine position of current
dislocation in list (I)

¥

Define DISL@C(I) |
[ 3

) o o
Store values of ‘.u, é-v, :(D

’

Determine node number from
node name for each node.

no

yes

J

| Store node number in DISL@C

Y

Print error

Return

DISLCP Flow Chart

message




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:
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LINL@D

D. A. Nagy

May 1967

ICETRAN

LONL@D processes the LINE L@AD command,
converts the specified linearly-varying
line load to equivalent nodal loads,
and stores in the appropriate array.

It checks each node along the line to

see if it has been previously defined.

It checks that each node is connected to the

previously-specified one by an element,i.e.,

that the line load coincides with element
edges at all times. If these requirements
are met, it computes the contribution of
the line load intensity to the generalized
nodal load at each node and adds it to

the generalized nodal load stored in
JTL@D.

It is called by CDL

STRUDL subsystem

LINE L@AD command

None

77 cards ICETRAN

2896bytes object program

PARTIC

None

None

If any of the specified nodes along
the line load were not previously de-
fined, the following message is printed:
'NODE 'name' NOT PREVIOUSLY DEFINED--
ERROR. '

If any two nodes along the line are
not connected directly by an element
edge, the following message is printed:
'NODE 'name' NOT CONNECTED TO PREVIOUS




-104-

Error Procedure: NODE BY ANY ELEMENT--ERROR.'
(continued) In both error cases, ISCAN is set

equal to 2.

l

Find node number
from given name

found? no —pd Print error
message
yes y
[ Return
Is this the first

node on the line? 1

Jo ygs Store node
®1 number and
1 force inten-
sities in
Is this node con- temporary
nected to the location
previous node?
¥ |
yes no
1 L_________. Print error
message

Compute contributions
of load intensity to
this node and previous
node

L 3
Add contributions to
the generalized nodal
loads in JTL@D

¥ '
Store this node and
its force intensities - Return
in temporary location

LINL@D Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:
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GRVL@D

D. A. Nagy

May 1967

ICETRAN

GRVL@D processes the GRAVITY L@AD
command and calculates the contribution
of the element weight to the general-
ized nodal loads at the three cornmers.
It loops on the elements, calculating
the area, volume, weight, x and y
components of the gravity vector, and
finally the contributions to the
generalized nodal loads of the three
nodes at the corners of each element.
It is called by CDL

STRUDL subsystem

GRAVITY LPAD command

None

49 cards ICETRAN

1728bytes object program

PARTIC

None

None

If the problem is only one of plate
bending, or if the gravity vector is
perpendicular to the plate, the follow-
ing messages are printed:

'COMPONENT OF THE GRAVITY LOAD PERPEN-
DICULAR TO PLATE MUST BE SPECIFIED VIA
PARTICULAR BENDING SOLUTION.'

'"GRAVITY LOAD COMMAND IS IGNORED.'
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|

Is problem only Print
bending? yes message
Y
ﬁf
Is gravity vector
perpendicular to yes
the plate?
! Return
)
.lLoop on all elements
Check for correct ISCAN=2
element-node incidence ‘
Error
correct? no
message
yes

Calculate contributions
of element weight to the
generalized nodal loads

1

Add contributions to
JTL@D

1

Return

GRVL@D Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:
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PARTIC

D. A. Nagy

May 1967

ICETRAN

PARTIC processes the PARTICULAR
BENDING SOLUTION command.

It branches on the indicator I1 (set
by CDL), depending on whether nodal or
element-centered values of the partic-
ular bending solution are specified.
It checks if the appropriate storage
arrays are defined, and if not, it
defines them. It then locates the node

or element numbers from their given

names and stores the values of the particular

solution in PBS@PLE (for elements).
It is called by CDL

STRUDL subsystem

PARTICULAR BENDING SOLUTION command
None

58 cards ICETRAN

2456bytes object program

PARTIC

None

None

If any specified node or element was
not previously defined, ISCAN is set
equal to 2 and the following message
is printed:

'NODE(or ELEMENT) 'name' NOT PRE-
VIOUSLY DEFINED--ERROR.'
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|

Are specified values nodal
or element centered?

1
nodal

Check definition of

PBS@LN
defined? qf
oS Define
y PBS@LN

l

!

Locate node numbers
from specified names

located?

yes

Store values
of K _,K_of
part%cu¥ar
solution in
PBS@LN

no

|

Print error
message

| ISCAN=2 |

' Return -
-j:l e

|
element

Check definition of

PBS@LE
defined? qf
e Define
y PBS@LE

1

Locate element numbers
from specified names

located?

yes

no

Print error

message

Store values
of X ,K_ of
part%cu¥ar
solution in
PBS@LE

rJ&SCAN=2

PARTIC Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:
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STDPSL

D. A, Nagy

May 1967

ICETRAN

STDPSL processes the PARTICULAR SOLUTION
UNIFORM LOAD command. It computes the
exact nodal values of the particular
solution functions K. and Ky and stores
them in PBSPLE. It then evaluates the
exact integral of Kx and Ky over each
element and stores these values in
PBSPLE. An indicator, IPRTIC, is set
equal to 1 if PBS@LE contains integrals
instead of element-centered values.

It loops consecutively through the node
list calculating the nodal values and
storing them. It then loops consecu-
tively through the element list evalu-
ating the integrals and storing them.

It is called by CDL

STRUDL subsystem

PARTICULAR SOLUTION UNIFORM LOAD command
None

137cards ICETRAN

5104bytes object program

PARTIC

None

None

Since this program only applies to plates
of constant thickness, the thickness value
used in computations is obtained from the
first element. 1If this value is zero,
ISCAN is set equal to 2 and the following
message is printed:

'ELEMENT ‘name' HAS ZERO THICKNESS--ERROR.
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|

Obtain material properties
from first element

|

Check thickness value

h=07? yes

no
[ |

Print error
message

Determine reference frame
for particular solution

y

ISCAN=2

]

Loop on nodes

b

Compute nodal values of
K_ and K
X y

|

Store in PBS@LN

|

Loop on elements

1

Compute geometry of element

1

Evaluate exact integrals
over element's surface

Store in PBS@LE

i

Return

STDPSL Flow Chart
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Program Name: STNGEN

Author: D. A. Nagy

Date: July 1967

Language: ICETRAN

Program Description: STNGEN is the executive program for the

element stiffness matrix generation
phase.

Program Logic: It defines the array ELSTMT in which the
element stiffness matrices will be
stored. It then loops on the active
elements checking the element type, obtain-
ing the necessary properties, calling
STGFTD to perform the actual matrix
generation for each element, and then

storing the resulting matrix in ELSTMT.

Linkage to Program: LINK TO STNGEN
Usage: STRUDL subsystem
Finite Element Analyzer

Program OQutput: None
Program Length: 65 cards ICETRAN

. 2432 bytes object program
Load Module: : STNGEN
Linkage to Programs: STGFTD
Linkage from Programs: STEMAIL
Error Procedure: If the element type is not 'FT@D', ISCAN

is set equal to 2 and the following
message is printed:

'ELEMENT 'name' IS NOT OF TYPE 'FT@D'--ERROR.'

If an element has zero thickness, ISCAN
is set equal to 2 and the following
message is printed:

'ELEMENT 'name' HAS ZERO THICKNESS--ERROR.'
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l

Define element stiffness
matrix array ELSTMT

¢

—’I Loop on active elements

)

Check element type

'FTOD'? no &4 Print error
message
yes 3
L | ISCAN=2

Obtain coordinates of the
element's corners

!

Obtain Young's Moduli,
Poisson's Ratios, and
shear modulus for the
element

1

Obtain element thickness

H=07? yes Print error
message

no ‘

4 ISCAN=2

Call STGFTD (X1,Y1,X2,Y2,
X3,Y3,EX, EY,PX,Py,G,H,
IPROB, TEMP)

!

Store element stiffness
matrix from TEMP (24) into
ELSTMT

|

Return

STNGEN Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:
Linkage to Programs:
Linkage from Programs:

Error Procedure:
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STGFTD

D. A. Nagy

May 1967

F@RTRAN

STGFID calculates the elements of
the behavior matrix for elements
of the type 'FTI@¥D' and stores them
in a dimensioned array TEMP(24)
according to the following cor-

respondance:

1 2 |

3 4 ' symmetric

5 6 )9 10|

7 8 |11 12 |
FERTY EEARTH FTRRE
|15 16|19 20 |23 24

STGFTD checks for consistency and
adequacy of the material properties
transmitted to it. If IPRYB <0, the

problem is a bending problem and subroutine

NDUAL is called to perform the necessary
duality conversion of material properties.
Called STGFTD

STRUDL subsystem

Finite Element Analyzer
None

29 cards F@RTRAN program
1176bytes object program
STNGEN

NDUAL

STEGEN -

None
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no yes
no yes
N
no yes
l Y
no IPRPBLO ? yes
Call NDUAL (EX, EY, PX, PY, G, H)
Compute and store the individual
it clements of the element behavior
) : matrix in TEMP(24)

o |

Return

STGFTD Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:

Linkage to Program:

Usage:

Program Output:
Program Length:

Load Module:
Linkage from Programs:
Linkage to Programs:

Error Procedure:
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NDUAL

D. A. Nagy

May 1967

F@RTRAN

NDUAL performs the duality conversion
of material properties from the
stretching problem to the bending
problem (see Table I )
CALL NDUAL (EX, EY, PX, PY, G, H)
STRUDL subsystem

Finite Element Analyzer

None

9 cards FPRTRAN program

512 bytes object program

STNGEN

STGFTD

None

None



Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:
Linkage from Programs:
Linkage to programs:

" Error Procedure:
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STNSAS

D. A. Nagy

August 1967

ICETRAN

STNSAS is the assembler of the complete
global stiffness matrix for the case

of non-symmetric problems.

It loops on the elements, obtaining the
3 nodes incident upon each element and
adding the appropriate contributions to
the submatrices of the global stiffness
matrix. It also constructs two bookkeep-
ing arrays to indicate the location of
non-zero submatrices in the global stiffness
matrix.

LINK TO STNSAS

STRUDL subsystem

Finite Element Analyzer

None

72 cards ICETRAN

5160bytes object program

STNSAS

STEMAI

None

None




—d Loop on all active elements

—91 Loop on the 3 nodes AREE—
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Define matrix storage array
FCMAT

i

Define bookkeeping arrays
ICUREL and IRELL

'

Obtain the numbers of the
3 nodes incident upon the
current element

¢

Is current node
numbe rgNSOL?

yes —

no

[

Store contributions to the
stiffness matrix from
current element into FCMAT

!

Update bookkeeping array
IREL1

!

Construct in ICUREL the list
of nonzero row elements for
each column of FCMAT

i

Return

STNSAS Flow Chart
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A3-5 Solver Interface Program

Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:

STNSSL

D. A. Nagy

August 1967

ICETRAN

STNSSL is an interface program which allows the
system to use a non-symmetric solver written
originally for another system.

The non-symmetric solver solves for only one
loading condition, expects the load vector

to be in a different form than KPPRI, and
returns the solution values in a vector of
different form from KPPRI. Thus the interface
program transfers the generalized loads/rotation
from KPPRI to another vector, calls the non-
symmetric solver once for each independent
loading condition, and transfers the solution
values back into KPPRI.

LINK TO STNSSL

STRUDL subsystem

Finite Element Analyzer

None

21 cards ICETRAN

1120 bytes object program

STNSSL

STNDUM (the actual solver)

None

None
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A3-6 Boundary Condition Programs

Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:
Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:

STNBCM

D. A. Nagy

August 1967

ICETRAN

STNBCM is the executive program for the boundary
conditions processing phase.

It determines whether the current problem is
bending or stretching and then calls the
appropriate subroutine to generate either the

generalizee nodal loads or rotations vector. It

then loops on all the boundaries, processing each
different boundary condition portion. It deter-
mines the type of boundary condition and then
calls a dictionary program that in turn calls the
appropriate subroutine to modify the global
stiffness/flexibility matrix and load/rotation
vector,

LINK TO STNBCM

STRUDL subsystem

Finite Element Analyzer

None

57 cards ICETRAN

2072 bytes object program

STNBCM

STNSLV

STNBLV

DICTS

DICTB

None

If the boundary conditions for some portion of

a boundary are not specified, the following
message is printed: 'CONDITIONS FOR BOUNDARY
'name' NOT COMPLETELY SPECIFIED--ERROR'



Program Names:
Author:

Date:
Language:

Program Descriptions:

Linkage to Programs:

Usage:

Program Output:
Program Lengths:

Load Module

Linkage from Programs:

Error Procedure:
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STNSLV, STNBLV
D. A. Nagy
August 1967
ICETRAN
STNSLV constructs the generalized nodal load
vector and stores it in the array KPPRI. STNBLV
¢onstructs the generalized nodal rotations
vector, including the contribution of the par-
ticular solution, and stores it in KPPRI. Only
the active, independent loadings are considered.
CALL STNSLV or CALL STNBLV
STRUDL subsystem
Finite Element Analyzer
None
STNSLV: 33 cards ICETRAN

1232 bytes object program
STNBLV: 71 cards ICETRAN

1280 bytes object program
STNBCM
STNBCM

None




Program Names:
Author:
Date:

Language:

Program Descriptions:

Linkage to Programs:

Usage:

Program Output:
Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:
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DICTS, DICTB
D. A. Nagy
August 1967
FORTRAN IV

DICTS and DICTB are dictionary programs that

branch to the appropriate subroutine for

processing stretching or bending boundary

conditions, respectively, over a boundary

portion starting at node NODE of boundary

IBN. The type of condition
CALL DICTS (IBN,IBC,NODE)
CALL DICTB (IBN,IBC,NODE)
STRUDL subsystem
Finite Element Analyzer
None
DICTS: 19 cards FORTRAN IV.
DICTB: 15 cards FORTRAN 1V
STNBCM
DICTS to SDISPL DICTB to

SSTRESS

SELAST

SEDGEB

SMIXED

SRIGID
STNBCM

None

is IBC.

BDISPL
BSTRESS
BELAST
BEDGEB
BMIXID
BMIX2D



Program Names:

Author:
Date:
Language:

Program Descriptions:

Linkage to Programs:

Usage:

Program Output:
Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:
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SDISPL, SSTRES, SELAST, SEDGEB, SMIXED, SRIGID,
BDISPL,BSTRES, BELAST, BEDGEB, BMIXID, BMIX24
D. A. Nagy
August-September 1967
ICETRAN
These programs are the routines for processing
the boundary condition portions of each boundary.
The modifications to the global stiffness/flex-
ibility matrix and loads/rotations vector are
as given in Chapter 3.
CALL Program (IBN, NODE)
where IBN= number of the boundary
NODE= position of first node of the
portion on the given boundary
STRUDL subsystem
Finite Element Analyzer
None -
STNBCM
None
DICTS, DICTB

None




Program Name:
Author:

Date:
Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Qutput:
Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:
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STNBKS

D. A. Nagy

June 1967

ICETRAN

STNBKS is the executive program for the
backsubstitution phase.

It transfers the results of the analysis
from KPPRI to N@DISP and combines the
results for the various loading combina-
tions. It then loops on all active
elements, obtaining the material and
geometric properties necessary for the
computation of element stresses and
strains. It calls STESTR (for the
bending problem) to compute the stresses,
strains, principal stresses and strains,
stress couples, and curvatures for each
element. Next it either stores the

nodal displacements in a temporary array

or retrieves them from that array or returns,

depending on the type of problem just

solved. Finally, if the problem just solved

was the stretching part of a general plate
problem, it transfers, to STEMAI (the main
executive of the Finite Element Analyzer)
to begin the bending part.

LINK TO STNBKS

STRUDL subsystem

Finite Element Analyzer

None

140cards ICETRAN

6448bytes object program

STNBKS

STESTR, STESCP, STEMAI

STEMAI

None
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!

Define array NODI
analysis

SP for storing
results

:

Transfer results

from KPPRI to NODISP

|

Combine results £

or loading combinations

i

Check for definit

strain arrays

ion of stress and

Define arrays for stress,

and principal strain.

defined? NO mmm=medd strain, principal stress,
yes
$ 3

Loop on all active elements

L

Obtain material and geometric properties.

1

Check IPROB to se

solved is bending or stretching

e if the problem just

stresfhing bending

Call STESTR to compute Call STESCP to compute
element stresses, strains element stress couples,
principal stresses, and curvatures, principal

principal strains

stress couples, and
principal curvatures

]

_3

Store computed values in arrays STRESS,

STRAIN, PRSTRS1 PRSTRN

Branch on value of IPROB

-2 -1

i |

Store nodal
values of
stress func-

;;;“S in Add 'STEMAI' to stack
L——Z—Ew—l—' and transfer to stack
- =] cn—

3
Retrieve ‘ Return
nodal ‘

displacements

0 +2

{

Store nodal displacements
in RNDTEM

)

STNBKS Flow Chart




Program Name:
Author:

Date:
Language:

Program Description:
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STESTR

D. A. Nagy

June 1967

ICETRAN

STESTR computes the stresses, strains,
principal stresses, and principal strains
for an element given the material and
geometric properties of the element.
CALL STESTR (EX,EY,PX,CX,CY,G,L,N,AR,A,
B,Y,V,E,S,PS,PE)

STRUDL subsystem

Finite Element Analyzer

None

31 cards ICETRAN program

1408bytes object program

STNBKS

STNBKS

None

None



-126-

|

Compute element strain
components
P € € €,

}

Check if element is
subject to temperature
strains

Compute element
temperature strains
and add to the total
strain components

temp.,

yes -
strains ?

no

}

Compute element stress
components
P CX, sy: G'z

!

Compute element
principal stress
components &, 6'2

|

Compute element
principal strain
components El R 82

!

Return

STESTR Flow Chart
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STESCP

D. A. Nagy

June 1967

ICETRAN

STESCP computes the stress couples,
curvatures, principal stress couples,
and principal curvatures for an element
given the material and geometric
properties of the element. It includes
the contribution of the particular
solution.

CALL STESCP (EX,EY,PX,CX,CY,G,H,L,N,AR,
A,B,U,V,E,X,PS,PE)

STRUDL subsystem

Finite Element Analyzer

None

58 cards ICETRAN program

2600bytes object program

STNBKS

STNBKS

None

None
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Compute contribution of
particular solution to the
element curvatures

:

Compute element stress
couples M, M, M
xx’ "Xy Yy

!

Compute element curvature

components
P xx’ xy’ vyy

!

Check if element is subject
to temperature curvature
effects

Compute temperature
curvature components
and add to the total
curvature components

Compute principal stress couple

M

components Ml’ 2

l

Compute principal curvature
components )

1

Return

STESCP Flow Chart
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Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:
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STNOUT

D. A. Nagy

ICETRAN

STNOUT is a temporary subroutine to output the
nodal displacements, element stresses, stress
couples, strains, curvatures, principal stresses,
principal stress couples, principal strains,

and principal curvatures for each loading condition
of the problem just solved. It is included
in the back substitution load module and is
called without the request of the user. It may
be replaced at a later date by a more complete
and selective set of output routines called
explicitly by the user.

CALL STNOUT

STRUDL subsystem

Finite Element Analyzer

For each active loading condition, it prints

out the nodal displacements (x and y components
only), element stresses, stress couples, strains,
curvatures, principal stresses, principal stress
couples, principal strains, and principal curvatures.
88 cards ICETRAN

2280 bytes object program
STNBKS

None

None

None
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APPENDIX 4

Table of Symbols in Alphabetical Order

a; = x component of side i considered as a vector
A = scalar defined by Eq (218)
ék =  matrix function of submatrices of the global flexibility

matrix, defined by Eq (193)

Arl = middle surface area of triangular element n
Ak = cross-sectional area of an edge beam
bi = y component of side i considered as a vector
Bk =  matrix defined by Eq (187) or Eq (219)
Cj =  trigonometric matrix defined by Eq (178)
Cyp =  gcalar defined by Eq (83)
\
C) = Cc!\C! } = matrix of moments at a cross section
=k x) Ty Jx
of an edge beam
dy =  scalar defined by Eq (80)
D =  matrix defined by Eq (227)
@ - =  trigonometric matrix defined by Eq (179)
D =  rigidity coefficient for the stretching problem,
n given by Eq (18)
DX,D =  rigidity coefficients for the bending problem, given
J by Egs (42) and (43)
E; =  matrix defined by Eq (57)
Ek =  Young's modulus for an edge beam
EX,E =  Young's moduli in the x and y directions for an
M orthotropic plate
E =  matrix of forces applied externally to a rigid boundary

portion
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matrix dual of R..
k;
elastic support flexibility coefficients

edge beam flexibility coefficients given by Egs
(205) to (207)

(in, Fyi) = vector of concentrated nodal forces
matrix portion of edge loads resisted by an edge beam

matrix defined by Eq (123)

scalar function of displacements (w) defined by
Eq (148)

matrix defined by Eq (217)

shear modulus

scalar defined by Eq (57)
matrix defined by Eq (230)
matrix defined by Eq (231).
average thickness of an element

matrix defined by Eq (220)

matrix function of geometric properties of segment
n, defined by Eq (94)

unit vectors in the x, y, and z directions

(2%x2) unit matrix

moment of inertia an edge beam about the z axis at
node k

matrix function of geometric properties of segment n,
defined by Eq (94)

elastic support stiffness coefficients
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edge beam stiffness factors, given by Eq (84)

global stiffness supermatrix ,
global flexibility supermatrix, dual of K

particular bending solution functions

element stiffness submatrix, defined by Eqs (14)
to (17) and Eq (24)

elastic support stiffness submatrix, defined by
Eqs (69) to (72)

length of segment i
matrix defined by Eq (214)

vector of applied edge moments

matrix of sines and cosines, defined by Eq (102)
moment applied externally to a point p
edge moment (vector parallel to edge) magnitude

bending stress couples, defined by Fig. 5

;x’ N! ) =vector of edge stress resultant

intensity on edge i

(N

nodal values of edge stress resultant intensity

unit outward normal vector to the boundary in the
x-y plane

superscript denoting quantities associated with
thermal effects

(2x2) zero matrix

superscript denoting quantities associated with
the particular solution of the bending problem

(px,p ,p..) = vector of distributed load intensity over
Y% the middle surface of the plate
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generalized nodal load components at node i due
to the distributed load components p_ and p_ over
element n x M

matrix dual of Pi = {Pxi Pyi} , the matrix of
generalized nodal loads due to P and py over all
elements incident upon node i

vector edge shear in the z direction

effective edge shear on the plate boundary in the z
direction

matrix given by Eq (180)

shears on the x and y faces of a differential
element, defined in Fig. 5

rotation matrix given by Eq (58)

generalized nodal load matrix due to edge load
intensities

generalized nodal rotation matrix dual of R,
components of Bi

distance along the boundary

superscript denoting quantities associated with the
edge support

vector tangent to the boundary

scalar defined by Eq (82)

column supermatrix of generalized nodal loads

column supermatrix of generalized nodal rotations,
dual of S

total generalized nodal force at node i due to element n

total generalized nodal force matrix at node i due to
all elements incident upon node i

matrix defined by Eq (226)

temperature change




c
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(u,v) =vector of in-plane displacement

x and y components of displacement of node or point i

column supermatrix of nodal displacements

column supermatrix of nodal values of stress functions
dual of U

values of stress functions at node i

matrix of stress functions at node i, dual of

A LA

matrix of displacements of a node q on a dislocation
(+ and - side)

z component of displacement

slope of plate at edge in s and n directions
slope of plate at edge in x and y directions
rotation of segment n, given by Eq (78)
geometric matrix defined by Eq (150)
scalar defined by Eq (181)

cartesian coordinates

coordinates of node or point i

distance from point p to node 1

scalar defined by Eq (216)

coefficients of thermal expansion

scalar defined by Eq (81)

components of the closing of a dislocation

axial strain in segment i

column matrix defined by Eq (95)
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thermal strains in an edge beam
super-row i of the global stiffness matrix

{exi eyi} = generalized nodal force due to thermal

effects, at node i, given by Eqgs (21) and (22)

generalized nodal rotation matrix due to thermal
effects, dual of —Qi

angle defined by Fig. 11

Poisson's coefficients

potential energy of element n

angle from x-exis to outward normal n on boundary
matrix defined by Eq (116)

boundary curvature deformation at node i

matrix defined by Eq (116)

specified rotation of segment 1

bending problem quantity dual of 1

symbol meaning "sum on all nodes k around the entire
closed boundary path"

matrix defined by Eq (229)

superscript denoting quantities associated with the
homogeneous bending solution

symbol meaning '"is replaced by"
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APPENDIX 6

List of Tables
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APPENDIX 7

PROGRAM LISTINGS

AT-1 (DL PROGRAMS

ADD 'BOUNDARY I

EXECUTE 'BDINIT!

REPEAT TABULAR

DATA CHECK SET '110!
CONDITICN *t110* LT 1

NEW COMMAND

OTHERWISE

CALL 'MTRAN!

MOVE DOUBLE tD10t TO 'D1¢
END CONDITION

DATA CHECK SET 110!

CALL *MTRAN?

MCVE DOUBLE 'D10t' TO 'D2¢
EXECUTE 'NBDASS!

END REPEAT TABULAR

FILE

REPLACE 'MTRAN! $ A CDL SUBROUTINE
CONDITION '110' EQ 1

NO 1D ALPHA 8 'D10O!

OR CONDITION '110' EQ 3

NO ID INTEGER tI36!

EXECUTE 'MTRANS!

OTHERWISE
MESSAGE - '

~ MESSAGE 'INCORRECT NAME SPECIFICATION!
MESSAGE ! !

MESSAGE 'NODEsELEMENTs AND BOUNDARY NAMES MUST BE!
MESSAGE 'INTEGER OR ALPHANUMERIC!
MESSAGE ¢ '

MESSAGE 'REMAINDER OF CURRENT COMMAND WILL BE SCANNED!
MESSAGE 'BUT NO EXECUTION OF SUBROUTINES WILL OCCURe!

MESSAGE '
INHIBIT

END CONDITION
RETURN

FILE

ADD 'BOUNDARY (!

DATA CHECK SET 110!

CALL 'MTRAN?

MOVE DOUBLE 'D10* TO 'Dl¢
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EXISTENCE 'DISPLt *STRESt' 'ELAST' 'EDGE!
IGNORE 'BEAM!?
CONDITION 11" LE 2
EXISTENCE tst Bt Gt SET t1I2¢
OR CONDITION 'I1l' EQ 5
EXISTENCF 'STRt* tBEND/1' 'BEND/2t' SET
OR CONDITION 'Il1' EQ 6
EXISTENCE 'FI! 'PIt tFRY SET tI2¢
NEXT RECORD
ID 'Ul!' REAL 'T1t STANDARD O,
ID 'V1t REAL *T2' STANDARD 0.
ID 'R1* REAL 'T3t* STANDARD 0o
ID 'YPY REAL 'T4' STANDARD O.
ID 'MP' REAL 'T5¢' STANDARD O
ID 'UPY REAL 'T1' STANDARD Os
ID *VP!' REAL 'T2t' STANDARD Os
ID t'XPt REAL 'T3' STANDARD O,
ID 'FX' REAL 'T1t' STANDARD O
ID 'FY' REAL 'T2' STANDARD 0.
END CONDITION OPTIONAL
REPEAT TABULAR
DATA CHECK SET 110!
CONDITION *'110' LT 1
NEW COMMAND
OTHERWISE
CALL *MTRAN?
MOVE DOUBLE 'D1Ct' TC 'D21
END CONDITION
MODIFIER '7TO!
DATA CHECK SET 110!
CALL 'MTRAN?
MOVE DOUBLE 'D10' TO 'D31t
OTHERWISE
PRESET DOUBLE 'D3' EQUAL O
END MODIFIER
ID tUr REAL T2t STANDARD O
ID 'Vt REAL 'T2¢ STANDARD Ce
ID tKXXt REAL 'T3' STANDARD Qo
ID 'KXY!' REAL 'T4t' STANDARD Os
ID *KYXt REAL *'T5' STANDARD Oe
ID 'KYY' REAL 'T6!' STANDARD Ca
ID 'EPS' REAL 'T7!' STANDARD Qe
ID 'wWt' REAL 'T8! STANDARD O
ID '*R' REAL 'T9' STANDARD O,
ID *IN' REAL 'T10t STANDARD O
ID *JY REAL 'T11¢ STANDARD Co
ID 'G' REAL 'T12¢ STANDARD O
ID 'NX' REAL 'T1! STANDARD Q.
ID *NY' REAL 'T2¢ STANDARD O
ID 'EB' REAL 'T3! STANDARD O
ID 12" REAL 'T4! STANDARD O
ID *NRY' REAL 'T2! STANDARD O,
ID tANG' REAL 'T3t STANDARD O,
ID 'CHI' REAL 'T6' STANDARD O,
ID *Q' REAL 'T8! STANDARD C.

'MIXED!?

11210

'‘RIGID!

SET

111

REQUIR -
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ID *MN' REAL 'T9! STANDARD O
ID 'KzzZ' REAL 'T10' STANDARD O
ID 'KSS!' REAL 'T11' STANDARD O
EXECUTE 'NBCCP!

ENC REPEAT TABULAR

FILE

ADD 'STARC! $ A CDL SURROUTINE
DATA CHECK SET tI10¢
CALL 'MTRAN!
MOVE DOUBLE 'D10' TO 'D1¢
DATA CHECK SET 110!
CALL *MTRAN!
MOVE DOUBLE tC10t* TO 'D2¢
MODIFIER 'TO!

DATA CHECK SET 'I110!

CALL tMTRAN!

MOVE DOURBLE D10 TG 1D3¢
OTHERWISE

PRESET DOUBLE 'D3t EQUAL Oo
END MODIFIER
EXECUTE *NSCCP!
RETURN
FILE

ADD *SIMPLE S

PRESET INTEGER 'I1t' EQUAL 1
CALL 'STABC!

FI1LE

ADD 'IN=-PLANE R!

PRESET INTEGER tI1' EQUAL 2
CALL 'STABC!

FILE

ADD '*NORMAL R!

PRESET INTEGER 'I1' EQUAL 3
CALL 'STABC!

FILE

ADD 'CLAMPED E!

PRESET INTEGER tIl* EQUAL 4
CALL 'STABC!

FILE

ADD 'FREE EY

PRESET INTEGER 411! EGQUAL 5
CALL 'STABC!

FILE

ADD 'LINE L!

PRESET 'I14' EQUAL C

REPEAT TABULAR

DATA CHECK SET '110!
CONDITION 110+ LE O
NEW COMMAND
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OTHERWISE

CALL '*MTRAN!

MOVE DQUBLE 'C10' TC tD2¢
END CONDITICN

IGNORE 'FOR!

ID 'X* REAL 'T1?

ID *Y'* REAL 'T2!

EXECUTE fLINLOD!

END REPFAT TABULAR

FILE

REPLACE t'DIsSLOC!

PRESET tI12' EQUAL 0

PRESET 'I4' EQUAL O

ID 'DUt REAL 'T1' STANDARD G

ID DV REAL 'T2t STANDARD O

lo YROUTY REAL T3t STANDARD Ve

EXECUTE 'DISLCPY

NEXT RECORD

MODIFIER 'PATH!

REPEAT

DATA CHECK SET 110!

CONDITION *'110' EQ -1

NEXT RECORD

NEw COMMAND

OR CONDITION 'I10r GE O

CALL 'MTRAN!

INCREMENT 140

EXECUTE 'DISLCP!

END CONDITION

END REPEAT

OTHERWISE

MESSAGE 'YOU FORGOT THE WORD =PATH=!
MESSAGE 'THE oFFECTS OF THE DISLCCATION WILL!
MESSAGE 'NOT BE INCLUDED IN THE PROBLEM!
MESSAGE 'BUT PROCESSING wILL CONTINUES!
END MODIFIER

FILE

REPLACE 'GRAVITY L'

ID '"ANGLE=X' REAL 'T1' STANDARD O
ID 'ANGLE=Zt REAL 'T2' STANDARD Oa
EXECUTE 'GRVLOD!

FILE

ADD 'LPROCY 3% A (DL SUBROUTINE
DATA CHECK SET 'I10¢

CALL '"MTRAN!

MOVE DOUBLE 'D1CGt TO 'D1!
PRESET INTEGER t13¢ EQUAL ©
CALL 'XROUT!

CONDITIOUN 'IiZ' EQ 1
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RETURN

ENSY CONDITION OPTIONAL

MOVE DOUBLE 'c10Y TO D2
CALL '"XROUT!

CONDITION 'I2' EQ 1

RETURN

END CONDITION OPTIONAL

~OVE LDOUobkc 'L1ICY TO  tL3Y
CALL *XROUT!

CONDITION 12 EQ 1

RETURN

END CONDITION OPTIONAL
MOVE DOJRLE 'D1OY TO 104
CALL *tXRQUT!

COMDITION I2' EQ 1

RETURN

N CONDITION OPTIONAL
MUVE DROURLE '019t To tns5e
CALL taxuuUT!

CONDITION '12Y cw L

RE TURN
END CONDITION UPTIONAL
MOVE DOUnsLe 'Dlutr TO ‘D6

CALL YAROUT!
CONDITIUN tI2Y Eu 1

RETURN
END CONDITION OF T TONAL
MOVE DOuBLy 'D1CY Tu o7

CALL 'XrOUT!
CONUITIUON 'I¢!' cW 2

RETURN
e CuinulTion OPTIUKNAL
revo volUobo 'OlOY TO LEpT-R

CALL 'XROU.!

CONDITION 12 EQ 1

Ko Uik

cie CONUCITICN OPTIUNAL
SOV E DOULLE TD10Y TC 09!
CaLlL rYAXROUT!

CuLDITIUN 11zt cu

KE UK

Erip CONDITICOW U ioNAL
PreseT InNTEGaR tI3Y BQual Lo
e Ui

sres

Al txedT 5 A CDOL SURROUI

IvewgMenT ot

DATA CHLLK SLT vilu!
COMUDITION 11, EQ 2
GIATSET vl EGUAL

O LU ITIon tI1lur £Q U
PivsoET 1i2Y coJdAL 1

vinmbErw ISt

i

N

E




-143-

PRESET 'I2' EQUAL ©
CALL '*MTRAN!

END CONDITION
RETURN

FILE

REPLACE 'BENDING PAR!
IGNORE t'SoOL!
MODIFIER YUNIFORM!
ID 'LY REAL 'T1' REQUIRED
ID tCr REAL *'T2' STANDARD G450
EXECUTE 'STDPSL!
OTHERWISE
REPEAT TABULAR f'END!
MODIFIER 'NO' $ MODIFIER LEVEL IS
PRESET INTEGER *I1' EQUAL O
CALL 'LPROC!
ID *KX?' REAL 'T1' STANDARD U
ID *KY' REAL 'T2' STANDARD Qe
EXECUTE 'PARTIC!
OR MODIFIER tEL!
PRESET INTEGER 'I1' EQUAL 1
CALL 'LPROC!
IO *KX' REAL 'T1' STANDARD Co
ID tKY!' REAL 'T2' STANDARD Oe
EXSCUTE 'PARTIC! '
OTHERWISE
MESSAGE 1 '

2

MESSAGE ' PERHAPS YOU FORGOT THE END STATEMENT!
MESSAGE 'REMAINING COMMANDS WILL BE SCANNEL BUT

MESSAGE 'EXECUTION WILL OCCUR!
MESSAGE ! !

INHIBIT

NEAT RECORD

NE COMMAND

END MODIFIER

END REPEAT TABULAR

ENO MODIFIER

FILE

NQ PROBLE®M
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A7-2 INPUT PHASE PROGRAMS (ICETRAN AND FORTRAN V)

SUBROUTINE BDINIT

C
C AUTHOR=- De Ae NAGY
C LANGUAGE= ICETRAN
C
C THIS SUBROUTINE INITIALIZES THE ARRAY OF BOUNDAKY NAMESH
C BDIDs THE POINTER ARRAY FOR BOUNDARY CUNDITIONSs BDCOND)
C AND THE PROBLEM TYPE INDICATOR IPROB.
C
COMMON FILL1(182)9ISCANSFILL2(140)sIDyFILL3(89)yIPROByIBCON
COMMON BDID(P)s BDCOND(P)
DYNAMIC ARRAY BDID(D)sBDCOND
IBCON=0
DEFINE BDIDs1sDCUBLESSTEP=1
DEFINE BDCONDs1lsPOINTERSSTEP=1
GO TO {(ToTsTeToTesTsTsTsTsls39D5)ID
1 IPRCB=0
RETURN
3 I1PROB=-1
RETURN
5 IPROB=2
RETURN
C
C IF ID IS NOT 10911y OR 12s THE COMMAND 'BOUNDARY INCI-
C DENCESst WHICH CALLED THIS SUBROUTINEs IS INVALID AND
C THE APPRUPRIATE ERKUR MESSAGE [5 PRINTED.
C
7 WRITE(698)
WRITE(699)
ISCAN=Z
RETURN
8 FORMAT(S51H THIS COMMAND VALID ONLY FOR DUAL PLATE STRETCHINGs!
9 FORMAT (81H DUAL PLATE BENDINGs AND DUAL PLATE GENERAL=-ERRORe)

END
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CUM=JTID(NTEMP)

WRITE (6+103) DUM

GO TO 70

[F(M=4) 899,70

M=1

IF(JTYPIELTOP(IsM+1))) 40940941
DUM=JTID(ELTOP(IsM+1))

WRITE (64100) DUM

GO TC 7¢C
INDIC=JTYP(ELTOP(I4M+1))

GO TO (1291391397070 70970912512513913970970970s70)sINDIC
J=1+1

DO 30 I=JyNBXTEL

DO 30 M=244
IF(EL.TOP(IsM)~NTEMP) 30s 7530
CCNT INUE

ERRIOR IF AT ANY POINT THE CHAIN IS BROKEN BY SOME NODE
THAT WAS NOT SPECIFIED AS A BOUNDARY NODE WHEN IT
SHOULD HAVE BEEN,

DUM=JUTID(NTEMP)
VWRITE (6+102) DUM

GO TO 73
NFIRST=ELTOP(IsM+1)
J=I+1

D0 50 IB=JsNBXTEL

DO 50 MB=244
[F{ELTCRP(IBsMB)~NTEMP) 50951950
CONTINUE

NTEMP=NFIRST

GO TO 21

IF(MB=4) 529353, 70

MB=1

IF(JTYP(ELTOP(IBsMR+1))) 54954455
[=IB

M=MB

GO TO 40

INDIC=JTYP(ELTOP(IBsMB+1))

GO TO (629639635705 7Cs70s7096296296396397097097C970)sINDIC
J=IB+1

GO T0O 190

N2ND=FLTOP(IBsMB+11})

GO TO (309s8ly52)9M
[F(ELTOP(193)-N2ZND) 83,84953
NTEMP=NFIRST

GO TC 31

GO TO (3558697 )9MB
IF(ELTOP(I94)—-N2ND) 53»84483
IF(ELTOP(1s2)-N2ND) 83984483
IF(ELTOP(IBs3)~NFIRST) 88989588
IF(ELTOP(IBs4)=NFIRST) 88989488
IF(ELTOP(IB92)=NFIRST) 88989968
NTEMP=NZND

GC 19 31
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SUSROUTINE NBDASS

G
C AUTHOR= NDe Ao NAGY
C LANGUARF= TCETRAN
C
C THIS SURROUTINE ACTS ON THE TABULAR REPEATS OF 1HE 'LOUNDAKY
C INCIDENCESY COMMANDy INCREMENTING THE CONNECTIVITY COUNTER
C IBCUN AND CUNSTRUCTING THE CHALN OF BOUNDARY NOUuiESs IR
C OxDEk ARUUND THE BUUNDARY IN THE +5 DIRECTION
< THIS SUSKUUTINE ASSUMES THAT NO bLeMERT TOUCHES Muxks THAN Uit
C CLOSED) FUUNDARY CURVES
C
COMMON FILLLI(T72)9D19D2eFTLL2(106)sISCANYFILL3(TE) 91 ID(F)sLUMI
COVMOMN JEXTNSJTYP(P) oFILLA{(98) sELTOP(P) sFILLS(16) sNuXTELsFILLO{Z0)
COVMMAN TRCONy ADID(P)Ys ENCOND(R)
DOURLE PRECISTION D1 4DZ2sDUM
DY ASAKTC ARRAY BDIN(N) ¢BECUND s JTYPsJITIDID) o FLTUP (I
TRCON=TUCON+S
BLILIToCONI=LL
CEFINE OODCUNUTERCON) 91 0sPUINTERYSTEF=10
C
C LOCATE NODE NUMBER OF FIRST NUDE
C
DO 1 I=1eJEXTN
IF(LCOBLE(D29JTID(TIN))Y 19291
1 CONTINUILE
( .
C FRROR IF THE NODE NAMED LY D2 WAS NCT PREVICUSLY
C DEFINED
C

WRITE(69100) D2
T ISCAN=2
RETURN
2 IF(JTYP(I)=3) 33445

CERRCE IF THE NODE MAMED BY D2 IS NOT ACTUALLY Ol A
SOUNDARY (SPECIFIED BY LOUNDARY OR 5 IN wOUFE CUURDIMATLS
COMMANT )

O oY Oy

2 MRITE(69171) D2
GO Tn 70

5 IF(JTYP(T)=11) Bsbyt

4 NTEMP=]

1o N=N+1
DEFINE SDCOND(ItsCONONY 95 9FULL»STEP=5
VESTROY BRCOND(IBCONN)
SDCONDIIRCONgNg 1Y=NTEMP

C LOCATE NEXT NODE ALONG BOUNDARY IN +S DIRECTION

DO 2¢ I=19sNBXTEL

DO 20 M=2494

IF(ELTOP(IsM)-NTEMP) 20s7420
20 CONT IMUE
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GO TO (90991992 9 M

INDIC=JTYP(ELTOP(143))

GO TC 93

INDIC=JTYP(ELTOP(1+4))

GO TO 93

INnvIC=JTYP(ELTOURP(I42))

WU TU (V499599537070 TUsTU T4 TGsun9US e TUNPTUeTUs70)wlNLIC
NTIMP=NFI#ST

Gu Tu 31

NTEVMP=NZND

NNR=BDCOND(TIRCCNs1 1)

IFINTEMP=NNNY 1C918091C

BOCOND(IBCONIN+1s1Y=C

RELEASE BDID

RELEASE BDCOKWD

RELEASE JTYP

RELoASe JTID

RLLEASE ELTOP

RoTORM

FOoRpAT(6H NODL sAds 3ot WAS NUT PREVIVUSLY uvbrlnco=—oifinwive )
FURGATIGH NODE 9ABy 30H IS KUT o A BulnlDARY—=2xvine)
CFORMATIZ3H NOSE THMEDIATILY FCLLOWING sAs &Gutl viAL NoT SPeCIclcoi
1AS ZOUNDARY nNUlE—-=ERRCHe)

FORMAT (6H NODE 948937m  NOT INCIDERT CN ANY cLETENT—=n 20 )

El“'-l,}



-14 8~

SUDRUUTINE MTrRANS

A
- AUTHOR = e Ae NAQY
. LANGUAGS = FORTIKAN IV
C
. TMIS SUBROUTINE TRANSFORMS AN INTEGER muMbBex OF UiP Tu
“ FOUR DIGITS FRGOm INTEGER FORMAT Tu AbLFrandinerIC FusmaTs
« LEFT=ADJUSTED IN THE 8=CAARACTEi® FirlLue
C
CurmmuN UM (ouw) s IFTLLISD)slzoerilL(D4)9ul0
LouBls FRECISTUN UNAMEYLL0
OIVENSTIWN 112)
EooolvelaNCE (1(1)s0OnNAME)
- Av 4 SLANK ChanACTERS Tu Tle)l=—cbevlc nprxESenTATIUN
«
[(2)=1073741K424
«
C prirkiv (N FIxST LIGIT uF ThHE NLmDER
C

DG 1 Jsled :
T =126/ ({10%%(5=Jy)/1u)
LECIFD) 19lez
L Cur TInuc
RETURN

o
« Aol enCiie Cus Furk FInsl UIGlT Ju LeErTimust CHARKACTER
w PONTTIGN OF T(1)e
C
i I{])==r08435400+(2%%24)%IFD
K=J.
KK=4=)
Ir{d=4) 49393
e
“ Urlervilig ketoiainiivg DlalTo ur Tne UMbl Ao D TURE
< TRo e crewll Lubro IN SullChooivi CiaRAaCicr PUsliIuns
- Ur 1 ll)e
<
o+ 1w Lo W=l eKK

126=126=1FD%Luk*(Bak) /14

TFN=T26/((10F¥X (4=K))/10)

I(1Y =1 (L) +(2k5 (8% (4=N))®1S)/16+(2%% (R (g=N))*IFD}/(2%%*8)
L3 K=K+]

GO TO 15

3 N=u

1o IF(N=3) 2us2ls21
C
C ADu LANK CHARACTERS Tu KEsiAInING rFUSITIUnS UF 1(1)
“ NOT rFILLew BY DIGIT COUES
C

s Wizl ]

Doy 14 L=Me3
14 LY =T(1)+2%* ((4—=N)*8) /4

< TRANSFER RFSULTING ALPHANUMERIC REFPRESFNTATIUN UF THE
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C NUMBER TO VARTABLE D10
C
<1 DLc=DNAME

RZTURN

END
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LN (:O
SUBKRUUTINE NpCCP
AU U= e e NAQY
LaNoiatz= TCoTRAN
Thlo SUr cUUTINE FRUCESSES TAE toudiwacY CUnD Ll Lwind 't CumimAnUe
Duivolbr PRECISIUN L1l L2y D3
DT OEMSION DATA(14)
CuiiuN TleicelFILL(32)s0ATAsTFILLIZG)Y s oot tLLLI(YE)
(OROHIIAS FILL2{59) s CFLENSCFw I 9CHANGsF TLL3(1T79) s IPRCsFILL4(S)
Cona G BDCUNG R
Y il O AloAaY LUCUNWY JTLuL (i)
Lo Teoivnloe 5UunARY NUMoERs PUSTilune UF THE howe(d)
Do Tre Crialies amln imME TYPES UF ouUNUARKY CUnpiTIund
meFonn Ay AFTEr CURRENT PORTIGH
CALL GLTNUS{DLslcoDs sl sdensdips)
DATA(1)=00
DETA(2)=0e
Irr=aDt ONDITedCec)+1 e
ITF=DCONDITeJCe3)+1 e
IF(KC) 799809 (S
{0z TL==lConND (L exCoz)+1e
ITL=rCuND({ToKCe5)+1 e
i [ (IPRUL) Leces
L Do o2 M=1eb
DATA(VE2 )Y =UATA(M+9)
SHANCE TU APFRUFKLIATE RUUTINE ruic STuxInG SPECIFTEL LUUNDARY
Cun1TIUGin VilUr Sy UEPENDING UN Trk VALUE ur 1ls THo
SOUGARY CONDITION TYPE IRDICATOR SET LY CliLa
y GU TU (1071930 94095Cs60) 911
Gl SFLACTHENT BeCets ROUTINE
1o IF(IPRUI) 1leleol3
11 DATA(2)=1
OATA(R)=DATA(3)/CFLEN
DATA(L)Y=DATAL4) /CFANG
IF(KCY T7CeTUs 71
i LC=JC
GO TG 72
7 CALL NSTAVIIsJCoKC=1lsbosDATANG)
(- Call NOTHVIIIRCIKC oo sDATANG)
9 RoLEASE BOHCOND

DV 150 =114

Low DATA(T)=Uoe
ReTURNM

1 DATA(L)=1a
DATA(R)Y=DATA(3) /CFLEN
NLaTa(a)y=DATA(G4) /CFLEN
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TEAKTY 73973974

KC=JC

G TC Th

CALL NMNSTBV(ITeJCeKC=1949sDATAL0)
CALL NSTRVI(IsKCsKCs&4sDATASO)
N=Jl

MADE=RDCOND (I oNy 1)
JTLODINODE 19 7)=DATA(3)
JTLOD(NODE 9193 )=DATA(4G)
IF(KC=N) Q3999498

N=N+1

IF(BDCUND({1slsl)) 10091009101
N=1

GO TO 101

GO TO (12914915)s12
CATE(1)=1.

DATA(2)=1e

DATA(2)=0ATA(3) /CFLEN
DATA(G4)=DATA(L)/CFLEN
DATA(L . )=DATA(L10)Y/CFLEN
DATA(LI1)=DATA(LL)/CFANG
IF(KC) TH9 77976

KC=JC

GC TO 78

CALL NSTRVY(IsJCsKT=19119sDATASC)
CALL NSTEV(ITesKCeKCs1CsDATAD)
GO TO (10724695102)412

RESS ReCat'S ROUTINF

IF(IPROB) 219224923

DATA(2)=2.

I1E=4
DATA(R)=DATA(3)*CFLEN/CFWT
DATA(4)=DATA(4) /CFWT

FIKC) 82453981

DATA(TIE)=N,

GO T0O 24

CALL NSTRVI(IsJC+19KC=1sIE9DATA4)
GC T (259269259254259264925)91TL
CALL NSTRBV(IT oKCoKCeIE-1sDATA L)
GO TO (2792692727279 269271s17TF
DATA{IE=1)=0.

DATA(2)=0,

CALL NSTBVI(IsJCsJCsIEsDATAWG)
GO 70O 99

DATA(L)=2.
DATA(3)=DATA(3)*CFLEN/CFWT
DATA(4)Y=DATA(4)*CFLEN/CFWT
IF(KCY 29929932
CALL NSTRVII»JC+19KC=1949eDATA4G)
IF(IL=1) 28928929
CALL NSTBV(IsKCsKCs4sDATA»G)
GO TC (169179169165 16s1791691€915)91FF
CALL NSTBVI(IsJCsJCstsDATAG)
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17 IF(IPROB) 99999919
273 GO TO (22918922)912
18 DATA(3)=0s
DATA(4)=0,
DATA(?) =2,
DATA(ICY=DATA(IC Y *CFLEN/CFWT
PATA(T1)=DATA(LILY /CFWT
£=11
GO TC &¢&
1y IF(I2=2) G94999,18

C
C ELASTIC BCUMNDARY ROUTINE

> IFUIPROG)Y 21933932

32 END=12

141 DAT2(2)=DATZ(2)/CFLEN
DATA(4)=DATA(L)Y/CFLEN
DC 160 I“s%

Lo DAT2(I)=DATA )“CFL N¥CFLEN/CFT
DATA(? )=h\T (10)/CFLEN
ugTA(11)=uATﬂ(ll)/CFANG
DATACIZ)=DATACLZ ) #CRLEN®CFLEN/CTWT
DAaTA(I3)=DATA(L3)*CFANG/CFHT
CO TO 35

53 Iuriv=8g
Gy TC 101
4 I.nD=8

DATA(Z2)=DATA(R)/CFLER
DATA(a)=DATA(L4) /CF '\\‘(1
SETA(S)=DATA(BYRCFLEZNHCFLEIN/CEYT
UATA(C)"LHIA(G)*CFfNL/kf”T

35 ICHNG=
DATA(L)=11
cAaTa(2yr=11
IE(RIY 2990t nC

7 KC=J4C
GO 7O vl
g CALL nSTRY T eJCrRC=1 9T eNDyCAT A ICHRG)
L CALL NoIfsv (TenConCyIERNOILATAY LCRNG)
GO TC 99
C
C EOGE 230A0 ROUTINL
¢
& THUIPROD)Y 4lea3eb.
s LENe=14

N=1ud
](_\2 DAY (1) LAIA(’)*&I‘L F\/ F'J'T
DATALA)=DATALGY*CFLEN/CFW
JATA(?)=DAIA(5)*CFLLN*C1 l‘/(l AT
DATA(S)=DATA(L) /(CFLEN*¥*4,)
1673 CATAMN) =DATAINY*CFLIN/CFWT
ﬁﬁ BINFLYEDATA(NFL Y /CFWT
AL A T LY = DATAINFS Y/ (CFLEN®#G o)
war(“'i- AT N3/ LCFLEN L)
OATE (I FG ) =0ATAINF 4y * R LENNCFLEN/CFWT
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GO TO 35

N=3
GO TO 163

MIXED BOUNDARY CONDITICNS RUUTINE

GO TO (51952953)912

DATA(1)=5,
DATA(3)=DATA(3)/CFLEN
DATA(&4)=DATA(4)#CFLEN/CFWT
UDATA(5)=DATA(5) /CFANG

IF{KC) 85955986

KC=JdC

IL=IFF

GO TO %5

CALL NSTBVI(I9JC+19KC=1959y0ATANG)
IF{IFF=2) 54955454

Cabl HOTBY(I9JCeJCe59DATASL)

GO TO (5695995695595690690699%950) 910
CALL MNSTEVIIIKCIKCe5sDATAS)

GO T9 99 '
CATA(2)=5,

IFOIRFROL) 58958909

N=0 :

[i=4

OATA (NI =DATALINI/CFLON
OATA(NFL)=CATAIN+LY ®CFLEN/ZCH AT
IF(RCY sTrutecy

KC=JC

Ge 7O <

CALL NSTBVII»JCoKC=19IEsDATLE G
CALL NETOVIIoKCoKCeIFZ=19DATA»S)
G2 TC 79¢

N=1v

[z=11

Gu TC Loy

CATA(Z2)=6

IV {IPRUC)Y Desen

IL=4

NED

CATAMN) =DATAIN)®CFLEN/CFNT

DATAIN+L)=0ATAINTL)Y/CFARNG

IF{RKCY T3994933

DATA(ILY=Ce

GO TC 7 _

CALL MSTBVIIsJl+1sKC=1sIEsDATANS)
GU TU (UeTs8w a7 Te8)e1TL

CALL NSTBVIIanCoRCeIE-LsDATAIL)
IF{ITrE=L) Coeoey

DATAl(IC=1)Y=010e

Chall NoTuviTeaJdCedlsicabATlres)

L wmy s
[CIVR R G
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GC TC 1leé¢g
RIGID ECUMNDARY ROUTINE

DATA(B)=DATA(S)/CFLIN

DATA(T)=DATACT) / (CFLEN®CFuT)
DATA(8)=CATAY) *CFLEIN

GU TO (L19C29166)012
I1E=¢%
DATA(2)=DATA() /CFLE]
CATA(a)=DATA{L)Y 7CFLEN
DT A(Z)Y=DATALS)/CFANG
ir{il=1) ool

IV ROy 595900
Ki=Jdl+1

Ie=lt=1

GO T0C &4

CALL NETAV(TeinConCollasnThog)
CALL ROTLVIIsulenl=lylutlyAalnes)
GL T 37

['e=¢
DATALZ2)=DATALZ) /7CFLL
CATACG)Y=0ATALL)Y /CFLL
DATA(S)Y=DATA(D)/CFLEN
GC TC &5

c=8 ’
DATALZ)=DATALZ)Y/CFWT
CATALG)SDATALLY /CFNT
L Tl 107
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SUBRUUTINE GETNOS(DI1s22503 91 eJsKeJCsKC)

AUTHOR= De Ae MAGY
LANGUAGF=-  TCETRAN

THIS SURRCUTINE OBRTAINS THE BUOURNDARY NUMoEk ARKD PUSI-
TIONS OF THE FIRST (AND LAST) MODE OF THE SPECIFIED
SCUNDARY PORTIONs GIVEN THE BOUNDARY NAME(DL)s AMD NUDE
NAMEZS (N2 AND ©3})e

LOUoLE PRECISICN D1y D2y D3

COMMON FILLI(182) 9 ISCANSFILLZ(TE)sJTIO(P) sDUIMsJEXTineFILL3(14Y)
COMNMON I8CGIny BDID{(P)y BDCOND ()

OYNAMIC ARRAY EDID(D)s JTID(D)s EDCUND

2001 I=1916CON

IFQLODBLE(DLy3DID(T) )Y 19291

CONTINUE

ERACR=-=BOUNDARY NOT PREVIOGUSLY DEFIRED

HMRITZ(69100) DI
ISCAN=Z
20 TO 12

I NOW EQUALS BOUNDARY NUXLER

DO 3 J=1eJEXTH
IF(LCOBLEAD2sJTID(UY)) 39493
COMNTINMUE

ERPOR=-NODE=1 NNT PREVICUSLY DEFINMED

WRITE(69101) D2
GO TC 90

J NOW EQUALS NUMBER OF NCDE-1

DO 5 K=19JEXTN

IF(LCOBLE(D3y JTID(KI))Y 59695
CONTINUE

IF(D3) 15416415

K=0C

GO TO 6

ERROR==NODE=2 NOT PREVIOUSLY DEFINED

WRITE(69101) D32
GO Tn 90

K NOw EQUALS NUMBER OF NODE=-2

JC=1

FJd=J

IF(BNPCONDI(T9JCy1)=FJ) T98s7
JC=JC+1
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IF(BDCOND(I9JCsl)) 1051059
ERROR==NODE=-1 NOT ON GIVEN BCUNDARY

WRITE(69102) D2s D21
GO T2 90

JC NOwW EGQUALS POSIGION OF NODE=1 IN CHAIN

TF{K) 17918917

KC={

GO T 12

Ke=1

FK=K

IF(DTCOND T ZKCy1)=FK) 11912911
KC=KC+1

IF(aDCUND(TaKCo1)) 14914913

ERRON=-NODE=2 MNOT ON GIVEN bOUNDARY

G0 T 10

RELEASL BOID

Rl fesk JTID

RILEASE ADCCN

RETLRY

Fo AT(17H SUUNDARY 9A8s32H NOT PREVIOUSLY DEFINED--ERRURe)
Fric AT (6 RODE sAS422H  NCT PHEVICUSLY DEFIMZD=—LRRUK)

F o)

CUMATIEH MODE 9A3418H  NCT UM BOURDARY A8 M ——Fitiux
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SUBROUTINE NSTBV(IBsJPsKPs IENDARRAY » ICHNG)

AUTHOR= De Ae NAGY
LANGUAGE= ICETRAN

THIS SUBROUTINE STORES THE FIXST IEND VALUES OF THE
DIMENSIONED ARRAY 'ARRAY' INTO THE DYNAMIC ARRAY
BOCUND FUR BUUNDARY NUMEBER=IBN FrUM NUDE PUSITIUN JP
TO NODE POSITION KPe IT ALSO ADDS TO THE CODE 1IN
ARRAY JTYP TO INDICATE THAT THE UCOUNDARY CONDITION
IS OR IS NOT ACTUALLY FULL DISPLACEMENT RESTRAINT
AT THE GIVEN NODEe THIS IS DONE BY ADDING THE
INTEGER 4 TO JTYP IF THE BOUNDARY CUNDITION IS
NOT THE DISPLACEMENT TYPE (FOR THE STRETCHING FROELEM)
R ADDING O IF IT ISe THE &4 OR 0 IS PASSED TU SUB=-
ROUTINE NSTBV THROUGH THE VARIABLE ICHNGa

COMMON FILL1(265) 9 JTYP(P)oFILL2(15C)y BDCUNDI(P)
DYNAMIC ARRAY BCCONUy JTYP
IN=UP

DO 10 I=1y9IEND

IS(ARRAY(I)) 191091
SODCOMND(IByINY I+1)=ARRAY(T)
CONTINUE
INCDE=BDCOND(IBsINy1)
JTYP(INODE)=JTYP(INODE)+ICHNG
IF(IN=KP) 29392

IN=IN+1 E
IF(SDCOND(IBYINS1)Y) 59495

IN=

GC TC 5

RELEASLE BDCOND

RELEASE JTVP

RETURN

INER)
END
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SUBROUTINE NSCCP

LANGUAGE- F

THIS SUBROUTINE PROCESSES THE STANDARD SUPPORT COMMANDS.

ORTRAN 1V

1T BRANCHES TO THE APPROPRIATE ROUTINE ON THE
s SETS THE INDICATORS I1 AND I2 FOR

INDICATOR 11

THE APPROPRIATE BOUNDARY CONDITION TYPES

BY THE USER»

DO 1 I=1,1
DATA(1)=0.

AND CALLS NBCCPs
COMMON QQDUB(2)s ICOM,
COMMON I19I29FILL1(32)sDATA(LL)»FILL2(368)9IPROB

1

IERRORY

GO TO (10520930+40450)911

IF(IPROB)
[1=5

12=2

CALL NBCCP
RETURN
I[1=5

[2=2

CALL NBCCP
12=1

I1=1

CALL NBCCP
RETURN
IF(IPROB)
I1=5

12=2

CALL NBCCP
12=1

I1=2

CALL NBCcP
RETURN
IF(1PROB)
I1=2

CALL NBCCP
RETURN
I1=2

12=2

CALL NBCCP
12=1

GO TO 12
[1=1

12=3

CALL NBCCP
RETURN
I11=2

12=3

CALL NBCCP
RETURN

END

11412913

11922923

31912932

ICOML»

IMPLIED

QQCOM(75)
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SUBROUTINE LINLOD

AUTHOR- De Ae NAGY
LANGUAGE=~ ICETRAN

THIS SUBROUTINE COMPUTES THE EQUIVALENT CONCENTRATED
NODAL LOADS (X AND Y COMPONENTS ONLY) FROM THE
SPECIFIED LINE LOAD INTENSITIES,

DOUBLE PRECISION D2

COMMON T19ILLaNPRsI4yFILIL1(32)sT19T2sX(2)9Y(2)sFXPRyFYPR
COMMON FILL6(30)9D2sFILL2(106)sISCANSFILL3(52)9CFLENSCFWT
COMMON FILL4(16)sLEXTNSFILL5(T7)sJTID(P)sDUMsJEXTNSFILLT(5)
COMMON JTXYZ(P) s JTLOD(P)4FILLB(91)sELTOP(P)FILL9(16)4NBXTEL
DYNAMIC ARRAY JTXYZ(R)sJTID(D)sELTCOP(1)4JTLOD(R)

ILL=0

IT=IDEF (JUNK» JUNKy JUNK s JTLOD)

IF(IT) 1139145113

DEFINE JTLODs10sPOINTERYSTEP=10

DO 1 I=1sJEXTN

IF(LCDBLE(D2sJTID(IN)) 19241

CONTINUE

ERROR IF A NODE ON THE PATH OF THE LINE LOAD WAS NOT
PREVIOUSLY DEFINEDe.

WRITE(65100) D2

ISCAN=2

ILL=1 )

GO TO 120

IF(14) 39344

IF(ILL) 545520
I1=IDEF(JUNK» JUNK s JUNK sJTLOD » I}
IF(TII) 17918517

DEFINE JTLOD(1)s54POINTER,STEP=5
DEFINE JTLOD(IsLEXTN)»12sFULL
GO TO 19

I1=I1DEF{ JUNK s JUNK » JUNK s JTLOD s I y LEXTN)
IF(I1) 19920519

X{1)=JTXYZ(Is1)

Y(1)=JTXYZ(1s2)
FXPR=T1*CFLEN/CFWT
FYPR=T2*CFLEN/CFWT

NPR=1

14=1

RELEASE JTXYZ

RELEASE JTLOD

RELEASE ELTOP

RELEASE JTID

RETURN

N=1

DO 9 JE=Ns¢NBXTEL
DO 9 K=2y94

IF(ELTOP(JEsK)=1) 99859
CONT INUE
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ERROR IF THE LINE LOAD CUTS ACROSS AN ELEMENT AT ANY
POINT~-IT MUST COINCIDE WITH ELEMENT EDGES AT ALL TIMES.

WRITE(69101) D2
I1SCAN=2
ILL=1
GO TO 121
8 DO 11 L=2»4
IF(ELTOP(JEsL)=NPR) 11912911
11 CONTINUE
N=JE+1
GO TO 10
12 X(2)=JTXYZ(1s1)
Y(2)=JTXYZ(Is2)
FLNGTH=( (X (1) =X{2) ) %#%¥244(Y(1)=Y(2))%%2,)%%,45
RXP=FLNGTH/6e¢* (2 *FXPR+T1*CFLEN/CFWT)
RYP=FLNGTH/6e* (2 #FYPR+T2%¥CFLEN/CFWT)
RXC=FLNGTH/6e* (2 *¥T1*CFLEN/CFWT+FXPR)
RYC=FLNGTH/6e%* (2 *¥T2*CFLEN/CFWT+FYPR)
I1=1DEF{JUNK» JUNKs JUNK s JTLODs )
IF(IT) 21922921
22 DEFINE JTLOD(I)s59sPOINTERsSTEP=5
GO T2 16
21 I1=19EF ( JUNK 9 JUNK g JUNK 9 JTLOD» T 9 LEXTN)
IF(IT) 15916915
16 DEFINE JTLOD(IsLEXTN)»12sFULL
15 JTLOD (NPRSLEXTNs1)=JTLOD(NPRyLEXTNy1)+RXP
JTLOD(NPRSLEXTN92)=JTLOD(NPRSLEXTN2)+RYP
JTLOD(TIsLEXTNs1)=JTLOD(IsLEXTNs1)+RXC
JTLOD(ISLEXTNs2)=JTLOD(IsLEXTNs2)+RYC
X(1)=X(2)
Y{ly=Y(2)
GO T0O 13
100 FORMAT(6H NODE »sA8,32H NOT PREVIOUSLY DEFINED--ERRORa)
101 OFORMAT(6H NODE »ABs55H NOT CONNECTED TO PREVIOUS NODE BY ANY ELEM
1ENT~=ERROR )
END
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SUBROUTINE GRVLOD

AUTHOR~ De Ae NAGY
LANGUAGE~ ICETRAN

THIS SUBROUTINE COMPUTES THE GRAVITY LOAD (X AND

Y COMPONENTS ONLY) ON EACH ELEMENTs DIVIDES IT INTO
THIRDSs AND ADDS THE RESULTING CONTRIBUTION

TO THE NODAL LOADS ARRAY JTLOD.

aNaRaNaNaNaNaXaNa!

DIMENSION X(3)s Y(3)s N(3)
COMMON FILL1(36)9T1sT2sFILL2(144)9sISCANIFILL3(54)9sCFANGSFILL10(15)
COMMON LEXTNsFILLG(16) sJTXYZ(P) 3JTLOD(P)sFILL5(85)sELID(P)
COMMON FILL6(2)9sELPROP(P)sELTOP(P)sFILL7(16)sNBXTELSFILLB(6)
COMMON ELSTDSsFILL9(22)5sIPRCB
DOUBLE PRECISION DUM
DYNAMIC ARRAY ELTOPsELPROP»JTXYZ(R)sJTLOD(R)SELID(D)
DEFINE JTLODsJEXTNePOINTER
DO 200 I=19JEXTN
DEFINE JTLOD(I)sLEXTNsPOINTERsSTEP=5
200 DEFINE JTLOD(ISLEXTN)s12sFULL
IF(IPROB) 192+3

IF THE PROBLEM IS ONLY PLATE BENDINGy A MESSAGE IS
PRINTED AND THE SUBROUTINE 1S NOT EXECUTED ANY FURTHER.

aNaNaXa!

1 WRITE(69100)
WRITE(69104)
WRITE(65101)
RETURN ‘

5 DUM=ELID(I)
WRITE (6+103) DUM
ISCAN=2
RETURN

3 WRITE(69102)
WRITE(69100)

: WRITE(69104)

2 IF(T2) Tele7

7 T1=T1/CFANG
T2=T2/CFANG

C LOOP ON ALL ELEMENTS

DO 10 I=1sNBXTEL
DO & J=244
IF(ELTOP(IsJ)) 59544
4 CONTINUE ‘
DO 6 J=193
N(J)=ELTOP(IysJ+1)
X(J)=JTXYZ(N{J)s1)
) Y(J)Y=JTXYZ(N(J)»2)
IF(ELPROP(I913)) 12s11512
11 ELPROP(I+13)=ELSTDS

C COMPUTE ELEMENT AREA, OBTAIN ELEMENT DENSITY AND



C
C

C

=162~

THICKNESSs AND COMPUTE FORCE COMPONENTS

12 OAREA=.5*ABS(-X(1)*(-Y(2)+Y(3))-X(Z)*(-Y(3)+Y(1))-X(3)*(-Y(l)+Y(2))
1)
FX==AREA*ELPROP (1413 )*%ELPROP(142)%SIN(T2)/3s
FY==SIN(T1)¥FX
FX==COS({T1)*FX

ADD RESULTS TO JTLOD FOR 3 NODES INCIDENT UPON CURRENT ELEMENT.

DO 10 J=193
JTLOD(N(J) sLEXTNs1)=JTLOD(NCJ) s LEXTNo1)+FX
JTLOD(N(J) sLEXTN»2)=JTLODIN(J) 9 LEXTNs2)+FY
10 CONTINUE
RETURN
100 FORMAT(49H COMPONENT OF GRAVITY LOAD PERPENDICULAR TO PLATE)
104 FORMAT(51H MUST BE SPECIFIED VIA PARTICULAR BENDING SOLUTION.)
101 FORMAT(33H GRAVITY LOAD COMMAND IS IGNOREDe)
102 FORMAT(10H REMINDER=)
103 FORMAT(9H ELEMENT ,A8y39H NODE INCIDENCE INCORRECTLY SPECIFIEDs)
END
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SUBROUTINE DISLCP

AUTHOR- De Aes NAGY
LANGUAGE= ICETRAN

THIS SUBROUTINE PROCESSES THE *'DISLOCATION' COMMAND.
DOUBLE PRECISION D2
COMMON 11912913914 ,FILL1(32)9T19T2sT3sFILL2(35)9D2,FILL3(106)
COMMON ISCANsFILL&4(52)sCFLENsCFWTsCFANGYFILL7(23)sJTID(P)4DUM
COMMON JEXTNsFILL5(148)sIPROBsIBCONSFILLE(4)sDISLOC(P)
DYNAMIC ARRAY DISLOCy JTIDI(D)
IF(12=1) 192911

IF THE PROBLEM IS PLATE BENDING ONLYsOR IF THE
PLATE IS SIMPLY CONNECTEDs A MESSAGE IS PRINTED OUT
AND THE COMMAND IS IGNORED.

IF(IBCON=1) 143514415
WRITE(69103)

WRITE(69101)

12=2

RETURN

IF(IPROB)Y 9510410

WRITE(6+100)

WRITE(6+101)

12=2

RETURN

II=IDEF ( JUNK» JUNKs JUNK sDISLOC)
IF(II) 39394

DEFINE DISLOC»59POINTERsSTEP=1
I=1

GO TO 5

I=1
IT=1DEF{JUNK s JUNK» JUNKsDISLOCHI)
IF(ITY 54596

DEFINE DISLOC(1)s10sFULLsSTEP=10
GO TO 8

I=1+1

GO TO 7

THE VALUES OF THE RIGID BODY CLOSING OF THE DISLOCQ)
ARE CONVERTED TO INTERNAL UNITS AND STORED.

DISLOC(Is1)=T1/CFLEN
DISLOC(142)=T2/CFLEN
DISLOC(143)=T3/CFANG

12=1 '

13=1

RELEASE DISLOC

RETURN

DO 12 J=1,JEXTN
IF(LCDBLE(D2sJTID(J))) 12513412
CONTINUE

ERROR IF A NODE ON THE PATH OF THE DISLOCATION WAS
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NOT PREVIOUSLY DEFINEDs

WRITE(69102) D2
ISCAN=2
RETURN

STORE NUMBER OF NODE ON THE PATH OF THE DISLOCATION

13 DISLOC(I3y914+3)=J
RELEASE JUTID
RELEASE DISLOC
RETURN

100 OFORMAT(62H DISLOCATION COMMAND APPLIES ONLY TO THE PLANE STRESS PR
10BLEM,)

101 FORMAT(25H COMMAND WILL BE IGNORED)

102 FORMAT(6H NODE »A8,36H WAS NOT PREVIOUSLY DEFINED--ERRORe)

103 OFORMAT(63H DISLOCATION COMMAND APPLIES ONLY TO MULTIPLY~CONNECTED
1PLATESs)
END
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SUBROUTINE PARTIC

AUTHOR=- De Ae NAGY
LANGUAGE~ ICETRAN

THIS SUBROUTINE STORES THE SPECIFIED NODAL OR ELEMENT=-
CENTERED VALUES OF THE PARTICULAR SOLUTION IN THE
ARRAYS PBSOLN (FOR NODAL VALUES) AND PBSOLE (FOR
ELEMENT VALUES)
COMMON I19I129I3sFILLL(33)eT1leT2sFILL2(34)sDNAME(10)sFILL3(90)
COMMON ISCAN
COMMON FILL4(52)9CFLENSFILLS5(17) 9sLEXTNsFILLE(T)sJTID(P) sDUM
COMMON JEXTNSFILLT7(94)sELID(P)sFILLB8(22)sNBXTELSFILLS(37)
COMMON PBSOLN(P)sPBSOLE(P)SFILL1IO(4)sIPRTIC(P)
DOUBLE PRECISION DNAME
DYNAMIC ARRAY PBSOLNsPBSOLESJTID(D)sELID(D)sIPRTIC
IT=IDEF(JUNK s JUNK s JUNK s IPRTIC)
WRITE (69900) LEXTN
IF(ITI) 13914413
14 DEFINE IPRTICILEXTNsHALF+STERP=5
13 IPRTIC(LEXTN)=0
IF(I1) 19192

1 IT=IDEF (JUNK s JUNK s JUNKsPBSOLN)
IF(IT) 39344

3 DEFINE PBSOLNsLEXTNsPOINTERsSTEP=5
GO TO 16

4 II=IDEF(JUNKy JUNK s JUNKsPBSOLNSLEXTN)

IF(IT) 15916915 :
16 DEFINE PBSOLN(LEXTN) sJEXTNSPOINTER
DO 17 I=1¢JEXTN
17 DEFINE PBSOLN(LEXTNsI)s2sFULL
DESTROY PBSOLN(LEXTN)
15 DO 5 I=1,13
DO 6 J=19JEXTN
IF(LCOBLE(DNAME(T)JTID(J))) 69796
6 CONTINUE

ERROR IF A GIVEN NODE WAS NOT PREVIOUSLY DEFINED,

WRITE(6+100) DNAME(I])

ISCAN=2
RETURN

7 PBSOLN(LEXTNsJs1)=T1*CFLEN

5 PBSOLN(LEXTNsJ92)=T2#CFLEN
RELEASE PBSOLN
RETURN

2 IT=1DEF ( JUNK s JUNK 3 JUNK sPBSOLE)
IF(II) 848418

8 DEFINE PBSOLEsLEXTNsPOINTERsSTEP=5
GO TO 19

9 IT=1DEF (JUNK » JUNK s JUNKsPBSOLE yLEXTN)

IF(II) 18419418

19 DEFINE PBSOLE(LEXTN) sJEXTNsPOINTER
DO 20 I=1oNBXTEL

20 DEFINE PBSOLE(LEXTNsI)s2sFULL
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DESTROY PBSOLE(LEXTN)
18 DO 10 I=1y13
DO 11 J=1,NBXTEL
IF(LCOBLE(DNAME(I)4ELID(J))) 11912411
11 CONTINUE

ERROR IF A GIVEN ELEMENT WAS NOT PREVIOUSLY DEFINED.

WRITE(65101) DNAME(I)

ISCAN=2

RETURN
12 PBSOLE(LEXTNsJs1)=T1*CFLEN
10 PBSOLE(LEXTNsJ92)=T2*CFLEN

RELEASE PBSOLE

RETURN
100 FORMAT(6H NODE »A8,32H NOT PREVIOUSLY DEFINED=-~ERRORs)
101 FORMAT(9H ELEMENT ,AB8s32H NOT PREVIOUSLY DEFINED=-ERRORe)
900 FORMAT(7H LEXTN=s 12)

END
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SUBROUTINE STDPSL

AUTHOR~ De Ae NAGY
LANGUAGE= ICETRAN

THIS SUBROUTINE COMPUTES THE EXACT INTEGRALS OF
THE STANDARD PARTICULAR SOLUTION OVER EACH ELEMENT
AND THE EXACT NODAL VALUES FOR EACH NODE,

DIMENSION X(3)s Y(3)

COMMON FILL1(36)sT19T29sFULL2(144)9sISCANSFILL3(52)9CFLENsCFWT
COMMON FILL4(16)sLEXTNSFILLS(10)9JEXTNYFILLE(5)sJTXYZI(P)
COMMON FILL7(87)sELID(P)sDUML(2)+ELPROP(P)$ELTOP(P)»FILLB(16)
COMMON NBXTELsFILLO(3) sELSTDESFILL1I0(3)sELSTPOSFILL11(29)
COMMON PBSOLN(P)sPBSOLE(P)sFILL12(4)sIPRTICI(P)

DOUBLE PRECISION DUM

DYNAMIC ARRAY PBSOLNsPBSOLEsJTXYZ(R)$ELTCP(1)9ELPROPHELID(D)
DYNAMIC ARRAY IPRTIC

PI1=3,1415926

C=T2

P==T1%CFLEN®CFLEN/CFWT

II=IDEF{JUNKs JUNK s JUNK s IPRTIC)

WRITE (6+900) LEXTN

IF(II) 22923922

DEFINE IPRTICs59HALFSTEP=5

- IPRTIC(LEXTN)=1

OBTAIN MATERIAL PROPERTIES

COMPUTATIONS ASSUME A HOMOGENEOUS PLATE~--THUS ALL
PROPERTIES ARE OBTAINED FROM THE FIRST ELEMENT.

EX=ELPROP(146)

TF(EX) 19291

EX=ELSTDE
EY=ELPROP(1s7)
IF(EY) 39493
EY=EX
PX=ELPROP(148)
IF(PX) 59695
PX=ELSTPO
PY=EX*PX/EY
H=ELPROP(1,2)
IF(H) 79897
DUM=ELID(1)
WRITE (69100) DUM
ISCAN=2 '
RETURN

DEFINE PARTICULAR SOLUTION STORAGE ARRAYS PBSOLN AND
PBSOLE.

IT=IDEF(JUNK s JUNK » JUNKsPBSOLN)
IF(II)Y 24925924
DEFINE PBSOLNsLEXTNsPOINTERsSTEP=5
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DEFINE PBSOLN(LEXTN) o JEXTN9POINTER
DO 26 I=19JEXTN

DEFINE PBSOLN(LEXTNsI)s2sFULL
I1I1=IDEF(JUNK s JUNK s JUNKsPBSOLE)
IF(IT) 27928927

DEFINE PBSOLESLEXTNsPOINTER»STEP=5
DEFINE PBSOLE(LEXTN)sJEXTNsPOINTER
DO 29 I=14JEXTN

DEFINE PBSOLE(LEXTNsI)s2sFULL

DETERMINE AXES FOR PARTICULAR SOLUTION
FIND MAXIMUM AND MINIMUM X AND Y COORDINATES

XMAX=JTXYZ(1s1)

XMIN=XMAX

YMAX=JTXYZ(192)

YMIN=YMAX

DO 15 I=24JEXTN
IF(XMAX=JTXYZ(191)) 109949
XMAX=JTXYZ(Is1)

GO TO 11

IF(XMIN=JTXYZ(Isl)) 11911912
XMIN=JTXYZ(I91)
IF(YMAX=JUTXYZ(192)) 13914sl4
YMAX=JTXYZ(192)

GO TO 15

IF(YMIN=JTXYZ(Is2)) 15515916
YMIN=JTXYZ(Is2)

CONTINUE
A=ABS( { XMAX=XMIN)/2as)
B=ABS({(YMAX=YMIN)/24)

COMPUTE AND STORE NODAL VALUES OF PARTICULAR SOLUTION

DO 116 I=1,JEXTN

XG=JTXYZ(Is1)

YG=JTXYZ(Iy2)

XX=XG=XMIN=-A

YY=YG-YMIN=~B
FKX=6¢%P/(EY*H*%3 4 )% ((1e~C)¥(YYXYY=B¥B)~CHPX¥ (XX*¥XX-A*A) )
FKYS6o¥P/(EY¥H®%¥3 )% (CH (XX#XX—A¥A)=PX¥(1a=CI*(YY¥*YY-B*B))
PBSOLN(LEXTNs I91)=FKX

PBSOLN(LEXTN9I92)=FKY

COMPUTE AND STORE INTEGRALS OF THE PARTICULAR SOLUTION
OVER EACH ELEMENT SURFACE.

DO 17 I=1sNBXTEL

DO 18 J=1»3

X(J)=JTXYZ(ELTOP(I4J+1)s1)
Y(J)=JTXYZ(ELTOP(IsJ+1)92)
Bl1=Y(3)=Y(2)

B2=Y(1)-Y(3)

B3=Y(2)=Y(1)
AREA=0e5%ABS(=X(1)*¥B1-X(2)*B2-X(3)*B3)
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IF(X(2)=X{1)) 19520919

THETA=PI/2, :
XB=ABS(Y(2)=Y (1))

GO To 21
THETA=ATAN((Y(2)=Y (1)) /(X(2)=X(1)))
XB=(X(2)=X(1))/COS(TIETA)
YBAR=24*AREA/XB
FL13S=(X(3)=X(1))%%2e+((Y(3)=Y(1))%%2,)
XBAR= (FL13S=YBAR¥¥24)¥¥045
SIT=SIN(THETA)

COST=COS(THETA)

C1=X(1)=XMIN=-A

C2=Y(1)~YMIN-B

D=6e %P/ (EY*H¥%3,)

SINSQ=SIT**2,

C0SSQ=COST*COST

FX2=XB*YBAR* ( XB¥XB+XB*XBAR+XBAR®XBAR) /1240
FY2= (XB*YBAR¥¥34) /1240
FXY=XB*YEAR¥¥ 2% (XB+24 ¥XBAR) /2440
FX1=XB*YBAR¥ ( XB+XBAR) /640
FY1=YBAR*YBAR¥XB/640
FCON=XB*YBAR/ 240

COMPUTE INTEGRAL OF KX OVER SURFACE

FKX=FX2%¥{(1e=C)*¥SINSQ-CHPX%COSSQ)

FKX=FKX+FY2%( (1e—-C)*COSSQ-C*PX*¥SINSQ)
FKX=FKX+FXY#2 e %#SIT#COST* (1e=~C+C*PX)
FKX=FKX+FX1%#2¢%((14=C)*C2%¥SIT-CXPX#C1%COST)
FKX=FKX+FY1%#2¢% ((14=C)*¥C2¥COST-C*PX*C1*SIT)
FKX=FKX+FCON¥ ( (1e=C)*(C2%C2=B*B)~C*PX*(CL*C1-A*A))
FKX=FKX*D

PBSOLE(LEXTNsI91)=FKX

COMPUTE INTEGRAL OF KY OVER ELEMENT SURFACE

FKY=FX2% [ (C¥COSSQ-PX*(14=C)*SINSQ) )
FKY=FKY+FY2%(C¥SINSQ=PX% (14=C)*C0OS5Q)
FKY=FKY+FXY*2,¥STT*#COST#* (C~PX*(14~C))
FKY=FKY+FX1%#24% (C*C1*¥COST=PX*(1e=C)¥SIT)
FKY=FKY+FY1#2 4% (C*#C1#SIT=PX*(1e=C)*COST)
FKY=FKY+FCON¥ (C*¥(C1%¥C1-A*A)=PX¥* (14=C)*(C2¥C2~B*B))
FKY=D*FKY

PBSOLE(LEXTNsI92)=FKY

RELEASE PBSOLE

RELEASE PBSOLN

RELEASE ELPROP

RELEASE ELTOP

RELEASE JTXYZ

RELEASE ELID

RELEASE IPRTIC

RETURN

FORMAT(9H ELEMENT ,A8s 28H HAS ZERO THICKNESS=-ERROR,)
FORMAT(7H LEXTN=s [2)

END
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A7-3 ELEMENT STIFFNESS/FLEXIBILITY MATRIX GENERATION PHASE.

SUBROUTINE STNGEN

C

C AUTHOR=- De Ae NAGY

C LANGUAGE— TCETRAN

C

C THIS SUBROUTINE IS THE EXECUTIVE FOR THE ELEMENT

C STIFFNESS/FLEXIBILITY MATRIX GENERATION PHASEs

C
COMMON FILL1(182)’ISCANoFILL2(87)9JTXYZ(P)’FILL3(87)0ELID(P)
COMMON FILL&4(2) sELPROP(P)sELTOP(P)sFILL5(14)sELEXT(P)4FILLS
COMMON NBELSsFILL7(2)sELSTDESELSTDGyFILLB(2)9ELSTPOSFILLI (&)
COMMON ELSTMT(P)sFILL10(15)sIPROB
DYNAMIC ARRAY JTXYZ(R)sELID(D)sELPROP,ELTOP(I)4ELEXT(I)sELSTMT
DIMENSION TEMP(24), NODE(3)
DOUBLE PRECISION DUM
TYPE=tFTOD!
DEFINE ELSTMTsNBEL 694

C

C LOOP ON ALL ACTIVE ELEMENTS

DO 7 1=1sNBEL
IN=ELEXT(I)
IF(TYPE=-ELPROP(ELEXT(I)91)) 19291

C
C ERROR=~WRONG ELEMENT TYPE
C
1 DUM=ELID(IN)
WRITE (69100) DUM
ISCAN=2
RELEASE ELID
GO TO 99
C

C DETERMINE COORDINATES OF ELEMENTS THREE VERTICESS

2 DO 3 J=193

3 NODE(J)=ELTOP(ELEXT(I)sJ+1)
X1=JTXYZ(NODE(1}s1)
Y1=JTXYZ(NODE(1)s2)
X2=JTXYZ{NODE(2) 1)
Y2=JTXYZ(NODE(2)9+2)
X3=JTXYZ(NODE(3)s1)
Y3=JTXYZ(NODE(3)s+2)

C RETRIEVE THE ELEMENT PROPERTIESs

EX=ELPROP(IN»6)
IF(EX) 20+21920
21 EX=ELSTDE
20 EY=ELPROP(INs7)
PX=ELPROP (IN»8)
IF(PX) 22923922
23 PX=ELSTPO
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PY=PX*EX/EY
G=ELPROP(IN»12)
IF(G) 24425424
G=ELSTDG
H=ELPROP(INs2)
IF(H) 59495

ERROR=«~ELEMENT HAS ZERO THICKNESS

DUM=ELID(IN)
WRITE (69101) DUM
ISCAN=2

RELEASE ELID

GO TO 6

CALL STGFTD TO COMPUTE THE DIAGONAL AND LOWER HALF
OF THE MATRIX FOR THE CURRENT ELEMENTe ANSWER IS
RETURNSZD IN THE ARRAY TEMP AND MUST BE STORED IN
THE DYNAMIC ARRAY ELSTMT.

CALL STGFTD(X1sY1leX29Y29X3sY39EXIEY sPX9sPYsGsHeIPROBTEMP)
DO 7 J=1s6

DO 7 K=1ls4

MA=4%J+K=4 ;

ELSTMT(I9sJsK)=TEMP (MA)

RELEASE JTXYZ

RELEASE ELTOP

RELEASE ELSTMT

RELEASE ELPROP

RELEASE ELEXT

RETURN

FORMAT(9H ELEMENT ,A8,31H IS NOT OF TYPE 'FTOD'!'=-ERROR4)
FORMAT(9H ELEMENT ,A8s28H HAS ZERO THICKNESS—==ERRORs)
END
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SUBROUTINE STGFTD(X1sY19X29Y29X39Y39EXsEYsPX

AUTHOR=~ De Ae NAGY
LANGUAGE- FORTRAN 1V

THIS SUBROUTINE COMPUTES THE DIAGONAL AND LOWE
OF THE ELEMENT STIFFNESS/FLEXIBILITY MATRIXe
BENDING PROBLEMs IT CALLS NDUAL TO PERFORM THE
DUALITY CONVERSION OF PROPERTIES

DIMENSION A(3)s B(3)s TEMP(24)

IF(EY) 19192

EY=EX

IF(PY) 59594

IF(EX#PX=EY#PY) 59695

PY=EX%¥PX/EY

IF(IPROB) 74848

CALL NDUAL(EXSsEYsPXsPYsGoH)

All)=X3=X2

A(2)=X1=X3

A{3)=X2=X1

B(l)=Y3=Y2

B(2)=Y1l=Y3

B(3)=Y2=-Y1
AREA=0e5%#ABS(=X1%¥B(1)-X2%¥B(2)=X3#B(3))
D=H/ (4 s OXAREA¥ (1 e—PX®PY) )

N=1

PC=(1e=PX¥PY)*G

DC 9 I=193

DO 9 J=1»!

TEMP (N) =D* (EX#*B(I)*B(J)+PC*A(I)*A(J))
TEMP (N+1)=—D¥ (EX¥PX#B(I)#A(J)+PC*A(I)*¥B(J))
TEMP (N+2) =-D* (EY¥PY*A(1)%#B(J)+PC*B(I)*A(J))
TEMP (N+3)=D*(EY*A(T)*¥A(J)+PCXB(I1)*B(J))
N=N+¢4

CONTINUE

RETURN

END

SUBROUTINE NDUAL(EXsEYsPXsPYsGsoH)

AUTHOR~ De Ae NAGY
LANGUAGE- FORTRAN IV

sPYsGoHs IPROB TEMP)

R HALF
FOR THE

THIS SUBROUTINE PERFORMS THE DUALITY CONVERSION

EXT==12e0%(1e0=PX*PY)/(EY¥H¥#4,40)
EY=EXT*EY/EX

G==340/(G*H¥*¥%4,40)

PX==PX

PY==PY

EX=EXT

RETURN

END




-173-

A7-4 NON=-SYMMETRIC STRUCTURAL STIFFNESS/FLEXIBILITY MATRIX
'GENERATION PHASE.

SUBROUTINE STNSAS

AUTHOR=- De As NAGY
LANGUAGE= ICETRAN

THIS SUBROUTINE GENERATES THE NON-SYMMETRIC STIFFNESS/
FLEXIBILITY MATRIX. IT IS STORED IN DYNAMIC ARRAY FCMAT,

NNOOOO NN

COMMON FILLl(lOO)oNSOLoFILL2(67)oFCMAT(P)oICUREL(P)oIRELl(P)
COMMON FILL3(155)

COMMON JINT(P)sFILL4(34)sELTOP(P)sFILL5(14)9ELEXT(P) sNDUMyNBEL
COMMON FILL6(11)sELSTMT(P)

DYNAMIC ARRAY FCMAT(R)sICURELSIRELL ELSTMToELEXT(I)oJINT9ELTOP(I)
DIMENSION NODE(B)

DEFINE STORAGE ARRAY FCMAT AND BOOKKEEPING ARRAYS
ICUREL AND IREL1.

N ONN

DEFINE FCMAToNJSPOINTER
DEFINE ICURELsNJsPOINTER
DEFINE IREL192%NJyeNJ9HALF
DESTROY IREL1

LOOP ON ALL ACTIVE ELEMENTS.

aNaNS]

DO 2 1E=14NBEL
DO 1 N=1y3
1 NODE(N)=JINT(ELTOP(ELEXT(IE)))
NsS=0
DO 2 I=1s3
DO 2 J=1l,yl
NS=NS+1
IF(NODE(I)=NJ) 33342
3 IF(NODE{J)=NJ) 494,42
4 DEFINE FCMAT(NODE(J))s2%NJsPOINTER
IT=IDEF(JNKsINK s INKsFCMAT o NODE(J)92#NODE(T))
IF(II) 10911910
11 DEFINE FCMAT(NODE(J)s2%NODE(I)=1)92sFULL
DESTROY FCMAT(NODE(J) 92%NODE(1)=1)
DEFINE FCMAT(NODE(J) 92%¥NODE(TI))s2sFULL
DESTROY FCMAT(NODE(J)s2%*NODE(I1))
C
C ADD CONTRIBUTION OF CURRENT ELEMENT TO FCMAT
c ,
10 OFCMAT(NODE(J) 92%NODE(I)=191)=FCMAT(NODE(J) 92*NODE(I)=1s1) +
1 ELSTMT(IESNSs1)
OFCMAT(NODE(J) 92*¥NODE(I)~=192)=FCMAT(NODE(J) s2*NODE(I)=142) +
1 ELSTMT(IEWNS»2)

C UPDATE BOOKKEEPING ARRAY IREL1
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IREL1(2*¥NODE(I1)=19NODE(J))=1
OFCMAT (NODE(J) 92%NODE(1)91)=FCMATINODE(J) 92*NODE(I)»1) +
1 ELSTMT(IEsNSs+3)
OFCMAT (NODE(J) s 2%*NODE(I)2)=FCMAT(NODE(J)92*¥NODE(I)s2) +
1 ELSTMT(IEsNSs4)
IRELL1(2%NODE(I)sNODE(J))=1
IF(I=J) 5925
5 DEFINE FCMATINODE(1))92%NJ9POINTER
IT=IDEF(IUNKyJNK 9 INK 9 FCMAT o NODE(T)92*¥NODE(J) )
IF(ITY 20921920
21 DEFINE FCMAT(NODE(T)2*NODE(J)~1)92sFULL
DESTROY FCMAT(NODE(1)92%NODE(J)=1)
DEFINE FCMAT(NODE(I)s2%NODE(J))92sFULL
DESTROY FCMAT(NODE(I)s2%NODE(J))
20 OFCMAT(NODE(I)9s2*NODE(J)=191)=FCMAT(NODE(I)92¥NODE(J)=1s1) +
1 ELSTMT(IEsNSs1)
IREL1(2%¥NODE(J)~14NODE(I)) =1
OFCMAT (NODE (1) 92%NODE(J)=192)=FCMAT(NODE(I)92%NODE(J)-1s2) +
1 ELSTMT{IEsNSs»3)
OFCMAT(NODE(1)92%NODE(J) 91)=FCMAT(NODE(I)»2%¥NODE(J)s1) +
1 ELSTMT(IEsNNS»2)
OFCMAT (NODE(1)92%NODE(J)92)=FCMAT(NODE(I)9s2*¥NODE(J)»2) +
1 ELSTMT(IEsNSy»4)
IREL1(2*NODE(J) 9NODE(I) ) =1

2 CONT INUE
C
C CONSTRUCT BOOKKEEPING ARRAY ICUREL
c .
DO 8 IC=1sNJ
N=0
DEFINE ICUREL(IC)»59HALFsSTEP=5
NJ2=2%NJ

DO 6 IR=1yNJ2
IF(FCMAT(ICsIRs1)) 79697

7 N=N+1

ICUREL(ICHN)=IR
6 CONTINUE

DEFINE ICUREL(IC)YsNsHALF
8 CONTINUE

RELEASE FCMAT
RELEASE ICUREL
RELEASE IREL1
RELEASE ELSTMT
RELEASE ELEXT
RELEASE JINT
RELEASE ELTOP

C ASSEMBLE STACK OF PROGRAMS FOR REMAINDER OF PROBLEM SOLUTION.

ADD TO STACK (19 *STNBKS!)
ADD TO STACK (1s!'STNSSL!')
ADD TO STACK (1s'STNBCM!)
TRANSFER TO STACK

END
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A7-5 BOUNDARY CONDITIONS PHASE

SUBROUTINE STNBCM

C
C AUTHOR=- De Ae NAGY
C LANGUAGE- ICETRAN
C
C THIS 1S THE EXECUTIVE PROGRAM FOR THE BOUNDARY
C CONDITIONS PHASEe. IT PROCESSES THE BOUNDARY CON=-
C DITIONS FOR EACH BOUNDARY IN ORDER AROUND THE
C BOUNDARY BY CALLING A DICTIONARY SUBROUTINE WHICH
C IN TURN CALLS THE APPROPRIATE BOUNDARY CONDITION
C SUBROUTINE, IT ALSO GENERATES THE LOAD OR
C ROTATINN VECTOR.
C
COMMON IMINSFILL1(99)sNSOLSFILL2(6T)sFCMATI(P)sICUREL(P)SIREL1(P)
COMMON FILL3(158)9IPROBsIBCONSsBDID(P) +BDCOND(P)
DOUBLE PRECISION DuM
DYNAMIC ARRAY BDID(D)sBDCOND
DYNAMIC ARRAY FCMAT,ICURELSIREL]
IMIN=0
IF(IPROB) 19242
1 CALL STNBLYV
L=3
GO TO 3
2 CALL STNSLV
L=2

IT=IDEF(UNKsJINK s INKsDISLOC)
IF(II) 70935101
101 CALL SDISLC
GO TO 3
3 DO 99 IBN=1,IBCON
J=1
NN=BDCOND(IBNs1sL)
IF(NN) 20951420
51 DUM=BDID(IBN)
WRITE(69100) DUM
GO TO 70
20 J=J+1
NST=BDCOND(IBNsJsL}
IF(NST) 50551450
50 IF (NN=NST) 10511510
11 IF(BDCOND(IBNsJ+191)) 204521920
21 J=1
10 NODE=J
GO TO (31531930)sL
31 CALL DICTS(IBNsNST,J)
GO TO 32
30 CALL DICTB(IBNsNST,J)
32 IF(J=NODE) 40599440
40 NST=BDCOND(IBNy»JsL)
GO TO 10
99 CONTINUE
IF(IMIN=3) 20045201,201
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WRITE (69102)

WRITE (69103)

WRITE (69104)

GO TO 70

GO TO 300

DEFINE FCMATsNSOL,POINTER
DEFINE ICUREL sNSOLsPOINTER
DEFINE IREL192#NSOLsNSOLyHALF
DO 60 I=1,NSOL
I1=1DEF(UNK9yJINK s JNK9yFCMATy 1)
IF(IT) 61960961

DEFINE FCMAT(I)#2*NSOLsPOINTER
CONTINUE

DO 64 IC=1sNSOL
N=IDEF(JINK s JNK s JNKy ICUREL s IC)
DO 62 I=1yN
IF(ICUREL(ICy»I)=NSOL) 62962963
CONTINUE

I=N+1

DEFINE ICUREL(IC)sI=1sHALF
CONTINUE

RELEASE BDID

RELEASE BDCOND

RETURN

1V0 OFORMAT(25H CONDITIONS FOR BOUNDARY

102
103
104

1ED--ERROR) '

sAB

32H NOT COMPLETELY SPECIFI

FORMAT(50H ERROR--MINIMUM BOUNDARY CONDITIONS NOT SPECIFIED.)
FORMAT(52H PLEASE RESUBMIT PROBLEM AND SPECIFY AT LEAST 3 DIS-)
FORMAT(49H PLACEMENT COMPONENTS FOR THE STRETCHING PROBLEMs)

END
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SUBROUTINE STNSLV

AUTHOR=~ De Ae NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE CONSTRUCTS THE GENERALIZED NODAL LOAD
VECTOR FOR THE STRETCHING PROBLEM,

COMMON FILL1(100) sNSOLsNNsNLDSToFILL2(4T7)9yLEXT(P)sFILL3(14)

COMMON KPPRI(P)sFILLA(104)sJTLOD(P) 9FILLS5(43)9sNJsFILLO(11)sJEXT(P)
DYNAMIC ARRAY KPPRI(R)sJEXTHLEXTsJTLOD(R)

DEFINE KPPRIsNJ92#NLDSI

DESTROY KPPRI

ADD CONCENTRATED NODE LOADS TO LOAD VECTOR (INCLUDES LINE LOADS
AND GRAVITY LOADS)

DO 99 I=14sNSOL

NODE=JUEXTI(I)

DO 99 L=1sNLDSI

LOAD=LEXT (L)

KPPRI (NODE92%L~1)=KPPRI(NODE»2%L~1)+JTLOD(NODESLOADs1)
KPPRI(NODE2%L)=KPPRI(NODE »2%L)+JTLOD(NODEsLOADs2)

ADD ELEMENT (SURFACE AND VOLUME) LOADS TO LOAD VECTOR

ADD THIS ROUTINE WHEN 'ELEMENT LOADS' COMMAND BECOMES
OPERATIONAL o

ADD ELEMENT TEMPERATURE LOADS TO LOAD VECTOR

ADD THIS ROUTINE WHEN 'ELEMENT TEMPERATURE LOADS!' COMMAND
BECOMES OPERATIONAL

RELEASE KPPRI
RELEASE JEXT
RELEASE LEXT
RELEASE JTLOD
RETURN

END
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SUBROUTINE STNBLV

AUTHOR- De Ae NAGY
LANGUAGE~ ICETRAN

THIS SUBROUTINE ASSEMBLES THE GENERALIZED NODAL
ROTATION VECTOR FOR THE BENDING PROBLEM.

aNa¥aXakakaXal

COMMON FILL1(102) 9oNLDSISFILL2(4T7)sLEXT(P)sFILL3(24)sKPPRI(P)
COMMON FILL4C102)9JTXYZ(P)$FILL5(45)sNJyFILLO(I) s JINT(P)
COMMON FILLT7(34)+sELTOP(P)Y FILLB(14)»ELEXT(P)sNFILyNBEL
COMMON FILL9(46)9sPBSOLN(P)sPBSOLE(P)sFILL1O(4)sIPRTIC(P)
DIMENSION A{3)9sB(3)sNODE(3)sX{3)sY(3)
DYNAMIC ARRAY KPPRI(R)sELEXT(I)ELTOP(I)sJTXYZ(R)»JINTSLEXT
DYNAMIC ARRAY IPRTICsPBSOLEsPBSOLN
DEFINE KPPRI»NJ92#NLDSI
DESTROY KPPRI
DO 99 IE=1sNBEL
NEL=ELZXT(IE)
DO 1 N=1y3
NODE(N)Y=ELTOP(NEL ¢N+1)
NODE (N)=JINT(NODE(N))
X{N)=JTXYZ(NODE(N),1)

1 Y{N)=JTXYZ(NODE(N),2)
A(l)y=X{(3)=X(2)
A(2)=X{1)=-X(3)
A(3)=X(2)=X(1)
Bll)=Y(3)=Y(2)
B(2)Y=Y(1l)=Y(3)
B(3)=Y(2)=Y(1l) .
AREA=Qe
GX=0,
GY=0,
DO 2 N=1y3

2 AREA=AREA-=-X(N)*B(N)
AREA=ABS(AREA)} /2.

ADD CONTRIBUTION OF PARTICULAR SOLUTION TO GENERALIZED NODAL
ROTATION VECTOR

NONO

DO 98 L=1yNLDSI
LN=LEXT(L)
IFCIPRTIC(LN)) 39443
3 DO 5 N=143
IF(NODE(N)=NJ) 79745
7 OKPPRI(NODE(N) 92%L~1)=KPPRI(NODE(N) 92%L~=1)+B(N)/(2¢*¥AREA) *PBSOLE(
1 LNsNELs1) '
OKPPRI(NODE(N) 92%L ) =KPPRI (NODE (N) 92%L)~A(N)/(2e*AFEA)*PBSOLE (LN

1 NEL»s2)
5 CONT INUE
GO TO 98
4 DO 6 N=1y3
GX=PBSOLN{LNsNODE(N)s1l) + GX
6 GY=GY + PBSOLN(LNyNODE(N})s2)

GX=(GX%*2e¢/9e+PBSOLE(LNINELS1)/34)/24
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GY=(GY*2e/9¢+PBSOLE(LNINELs2)/34)/2

DO 8 N=1
IF (NODE(

3
N)=NJ)

999,8

KPPRI (NODE(N) 92%L=1)=KPPRI (NODE(N) 9 2%¥L-1)+B(N)*GX
KPPRI (NODE(N) 92%L )=KPPRI(NODE(N) p2%#L)—A(N)*GY

CONTINUE
CONTINUE

ADD ELEMENT TEMPERATURE CURVATURE CONTRIBUTION TO ROTATION VECTOR

ADD THIS ROUTINE WHEN
BECOMES OPERATIONAL

CONTINUE
RELEASE
RELEASE
RELEASE
RELEASE
RELEASE
RELEASE
RELEASE
RELEASE
RELEASE
RETURN
END

KPPRI
ELEXT
ELTOP
JTXYZ
JINT
LEXT
IPRTIC
PBSOLE
PBSOLN

'ELEMENT TEMPERATURE LOADS!

COMMAND
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SUBROUTINE DICTS(IBNyIBCHsNODE)

AUTHOR=- De As NAGY
LANGUAGE~ FORTRAN 1V

THIS IS A DICTIONARY SUBROUTINE FOR BRANCHING
TO THE APPROPRIATE SUBROUTINE FOR PROCESSING THE
STRETCHING BOUNDARY CONDITION
GO TO (19293949596 798)s1BC
CALL SDISPL(IBNsNODE)
RETURN
CALL SSTRES(IBNsNODE)
RETURN
CALL SELAST(IBNsNODE)
RETURN
CALL SEDGEB(IBNsNODE)
RETURN
CALL SMIXED(IBNsNODE)
RETURN
CALL SRIGID(IBNsNODE)
RETURN
CALL SRIGID(IBNsNODE)
RETURN
CALL SRIGID(IBNsNODE)
RETURN
END

SUBROUTINE DICTB(IBNsIBCsNODE)

AUTHOR = De Ae NAGY
LANGUAGE- FORTRAN 1V

THIS 1S A DICTIONARY SUBROUTINE TO BRANCH TO
THE APPROPRIATE SUBROUTINE FOR PROCESSING THE
BENDING BOUNDARY CONDITION

GO TO (192939495961 918C
CALL BDISPL{IBNyNODE)
RETURN

CALL BSTRES(IBNsNODE)
RETURN

CALL BELAST(IBNsNODE)
RETURN

CALL BEDGEB(IBNsNODE)
RETURN :

CALL BMIX1D(IBNsNODE)
RETURN

CALL BMIX2D(IBNNODE)
RETURN

END
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SUBROUTINE SDISPL(1BNsNODE)

AUTHOR=- De Ae NAGY
LANGUAGE~ ICETRAN

THIS SUBROUTINE INTRODUCES DISPLACEMENT BOUNDARY
CONDITIONS FOR THE STRETCHING PROBLEM ON. BOUNDARY IBN
BEGINNING AT NODE POSITION -NODE-

COMMON IMINSFILL1(101)sNLDSIsFILL2(63)sKPPRI(P),FILL3(161)
COMMON JINT(P)sFILL4(86)sBDCOND(P)
DYNAMIC ARRAY JINT,BDCONDsKPPRI(R)
1=BDCOND( IBNyNODE 1)

NINT=JINT(I)

IMIN=IMIN+1

DO 1 L=1sNLDSI
KPPRI(NINTs2%L=1)=BDCOND(IBNsNODE »4 )
KPPRI (NINT»2%L)=BDCOND ( IBNyNODE 95 )
IF (BDCOND( IBNsNODE+191)) 29293
NODE=1

GO TO 7

NODE=NODE+1

IF (BDCOND ( IBNsNODE 32)=1) 4345
RELEASE BDCOND

RELEASE JINT

RELEASE KPPRI

RETURN

END
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11
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12

10
14

20

SUBROUTINE SSTRES(IBNsNODE)

AUTHOR=- De Ae NAGY
LANGUAGE= ICETRAN

THIS SUBROUTINE INTRODUCES STRESS BOUNDARY CONDITICNS
FOR THE STRETCHING PROBLEM ON BOUNDARY IBN BEGINNING
AT NODE POSITION SPECIFIED BY -NODE~-

COMMON FILL1(102)sNLDSIsFILL2(63)sKPPRI(P)sFILL3(102)9JTXYZ(P)
COMMON FILL4(57)sJINT(P)sFILL5(86)9BDCOND(P)
DYNAMIC ARRAY JTXYZ(R) sBDCOND»KPPRI (R)
N=1

IF(NODE=1) 10411s10
IF(BDCOND(IBNsNODE+Ns1)) 12913912
NPR=BDCOND(IBNsNODE+N=191)

GO TO 14

N=N+1

GO 70O 11

NPR=BDCOND(IBNyNODE=~1s1)
XP=JUTXYZ(NPRy»1)

YP=JTXYZ (NPRy2)

FXPR=0s

FYPR=0e

NC=BDCOND(IBNsNODE,1)

XC=JTXYZ(NCs 1)

YC=JTXYZ(NCs2]

FLP=SQRT ( (XC=XP)*%2 44+ (Y(C~YP)%¥%2,)
FXC=BDCOND(IBNsNODE»4)
FYC=BDCOND(IBNsNODE»5)
NXT=BDCOND(IBNsNODE+1y1)

IF(NXT) 19192

NEXT=1

NXT=BDCOND(IBNsNEXTs1)

GO TO 3

NEXT=NODE+1

XNX=JTXYZ (NXTs1)

YNX=JTXYZ{(NXTs2)

FLC=SQRT({ (XNX=XC)*%#2 e+ (YNX=YC)¥%24)
INDIC=BDCOND(IBNsNEXT»2)

GO TO (4950h9bslhslytas)sINDIC

FXNX=O.

FYNX=0e

GO TO 6

FXNX=BDCOND(IBNINEXT 94}
FYNX=BDCOND(IBNsNEXT#5)

RXI=(FLP* (FXPR+2 e« #¥FXC)Y+FLCH¥{FXNX+2¢*¥FXC)) /60
RYI=(FLP* (FYPR4+2e*FYC)+FLCH(FYNX+2¢%#FYC)) /60
NINT=JINT(NC)

DO 7 L=1sNLDSI

KPPRI(NINT »2%L=1)=KPPRI{NINTs2%L~-1)+RXI1
KPPRI(NINT$2%L)=KPPRI{(NINTs2*¥L)+RY]
NODE=NEXT :

GO TO (839589898989 898)sINDIC

RELEASE BDCOND
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RELEASE JTXYZ
RELEASE KPPRI
RETURN
NPR=NC
FXPR=FXC
FYPR=FYC
FLP=FLC
NC=NXT
XC=XNX
YC=YNX
FXC=FXNX
FYC=FYNX

GO TO 20

END
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SUBROUTINE SMIXED(IBNsNODE)
AUTHOR=- De Ae NAGY
LANGUAGE~ ICETRAN

THIS SUBROUTINE PROCESSES THE MIXED BOUNDARY CONDITIONS
FOR THE PORTION OF BOUNDARY IBN BEGINNING WITH NODFe

AN OOOOON

COMMON FILL1(100) sNSOL sNDUMsNLDSIsFILL2(63)4KPPRI(P)yFILL3(102)

COMMON JTXYZ(P)

COMMCN FILL5(45)sNJoFILLE(S) o JINT(P)sFILLT(54)9NSYMyFILLB(31)

COMMON BDCONDI(P)

DYNAMIC ARRAY KPPRI(R)sJTXYZ(R)yJINT9BDCOND
DIMENSION A(4)

N=1

DETERMINE NODE JUST BEFORE CURRENT NODE

aNaXA

IF(NODE=1) 19192
1 IF(BDCOND(IBNsNODE+Ns1)) 39493
4 NPR=BDCOND(IBNsNODE+N=191)
GO TO 5
3 N=N+1
GO 70 1
2 NPR=BDCOND(IBNsNODE=11)

C

C DETERMINE COORDINATES OF PREVIOUS NODEs CURRENT NODE>
C AND LENGTH OF SEGMENT CONNECTING THEMe
C

5 XP=JTXYZ{(NPR»1)

’ YP=JTXYZ(NPRs2)
NC=BDCOND(IBNsNODE,1)
XC=JTXYZ(NC» 1)

YC=JTXYZ(NCs2)
FLP=SQRT((XC=XP)¥*%*24+(YC=YP)*3%24)

DETERMINE NEXT NODEs ITS COORDINATESs AND LENGTH OF
SEGMENT FROM CURRENT NODE TO NEXT NODE.

[aNaNAKA!

300 NX=BDCOND(IBNsNODE+1s1)
IFINX) 69796

7 NEXT=1
NX=BDCOND(IBNyNEXT 1)
GO TO 8

6 NEXT=NODE+1

8 XN=JTXYZ(NXs1)

YN=JTXYZ{NXs2)
FLC=SQRT( (XN=XC)*%#2 ¢+ (YN=YC) *%2,)

DETERMINE FORCE COMPONENT AND ANGLEe

N NN

RQI=0e5#(FLC+FLP)*BDCOND(IBN¢NODEs5S)
THETA=BDCOND(IBNsNODEs6)
CT=COS(THETA)
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ST=SIN(THETA)
URI=BDCOND(IBNsNODE»4)
[=JINT(NC)

LOOP ON ALL ACTIVE NODES.

DO 99 J=1sNJ
[IF(J=1) 991049

MODIFY SUBMATRIX Is1 OF GLOBAL STIFFNESS MATRIX AND
MODIFY SUBMATRIX I OF LOAD VECTOR KPPRI

GO TO (50951) sNSYM

CALL FNDSYM(NsIolsA)

GO TO 52

CALL FNDNSM(NsIosIyga)

DO 55 L=1sNLDSI

SIX=KPPRI(I92%L=1)

SIY=KPPRI(Is2%L)
OKPPRI(I92%L)=RQI-ST*SIX+CT#SIY+URI* (ST*(CT*A(1)+ST*A(2)) -
1 CT#(CT*A(3)+ST*¥A(4)))

KPPRI(I92%L=1)=UR]

Al4)=ST*ST*¥A(1)=ST*CT* (A(2)+A(3))+CT*#CT*A(4)

All)=1.

A(2)=0s

A(3)=0o

GO TO (53454)sNSYM

CALL STRSYM(IsIsA)

GO TO 99

CALL STRNSM(IsIsA)

GO TO 99

MODIFY SUPER-ROW I OF GLOBAL STIFFNESS MATRIX (I=INTERNAL
NODE NUMBER OF CURRENT NODE)s AND MODIFY SUBMATRICES 1
TO I-1 OF THE LOAD VECTOR KPPRI.

GO 79 (60961)sNSYM

CALL FNDSYM(NsIsJsA)

GO TO 62

CALL FNDNSM(NsIsJsA)

IF(N) 99999463

IF(J=1) 64965465

DO 66 L=1sNLDSI
KPPRI(J92%L=1)=KPPRI(Js2%L=1)~URI*(CT*A(1)+ST*A(3))
KPPRI(Je2%L)=KPPRI(Jo2¥L)~-URI*(CT*¥A(2)+ST*A(4))
Al4)==ST*A(2)+CT*A(4)

Al3)==ST*A(1)+CT*A(3)

A{1)=0e

A{2)=0s

GO TO (67968)sNSYM

CALL STRSYM(IsJsA)

GO TO 99

CALL STRNSM(IsJsA)

CONT INUE ‘
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MODIFY SUPER-COLUMN 1 OF GLOBAL STIFFNESS MATRIX AND
SUBMATRICES I+1 TO NSOL.

DO 199 J=1lsNJ

IF(J=1) 209199520

GO TO (21922)sNSYM
CALL FNDSYM(Ns»Jslsp)
GO TO 23

CALL FNDNSM(NsJslyA)
IF(N) 1999199524
IF(J=1) 2942928
IF{J=NSOL) 1284128429

128 DO 27 L=1sNLDSI

27
29

KPPRI(J92%L=U)=KPPRI(Js2%L=1)~URI*(CT*A(L1)+ST*A(2))
KPPRI(Jp2%L)=KPPRI(J92%L)-URI*(CT*A(3)+ST*A(4))

Al4)=CT*A(4)=ST*A(3)
A(2)==ST*A(1)+CT*A(2)

A(11=0o

A(3)=0a

GO TO (254926)sNSYM
CALL STRSYM(Js»IsA)
GC TO 199

CALL STRNSM(JsIsA)

159 CONTINUE

DETERMINE IF NEXT NODE ALONG BOUNDARY IS ALSO MIXED
BOUNDARY CONDITIONS TYPEe IF SOsNEXT NODE BECOMES
CURRENT NODEs CURRENT NODE BECOMES PREVIOUS NODE),

AND ENTIRE PROCEDURE 1S REPEATED FROM STATEMENT 300.
IF NOT, SUBRQUTINE RETURNS CONTROL TO STNBCM.

NCOND=BDCOND( IBNsNEXTs2)
IF(NCOND=5) 20092014200

200 RELEASE BDCOND

RELEASE JTXYZ
RELEASE JINT
RELEASE KPPRI
NODE=NEXT
RETURN

201 NPR=NC

XP=XC
YP=YC
FLP=FLC
NC=NX
XC=XN
YC=YN
NODE=NEXT
GO Tn 300
END
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SUBROUTINE FNDSYM(NsIsJsA)

AUTHOR=- De Aes NAGY
LANGUAGE~ ICETRAN

THIS SUBROUTINE RETRIEVES 2X2 SUBMATRIX IsJ FROM THE SYMMETRIC
GLOBAL STIFFNESS/FLEXIBILITY MATRIX AND STORES IT IN THE ONE=-
DIMANSIONAL ARRAY A,

IF THE SUBMATRIX IS ZERO OR ABOVE THE DIAGOMALs THE VALUE OF N IS
RETURNED =0

COMMON FILL1(160)9sKDIAG(P) 9KOFDG(P)sIOFDG(P)
DYNAMIC ARRAY KDIAG(R)sKOFDG(R) »IOFDG
DIMENSION A(4)

IF(I=J) 19293

DO 4 L=1s4
A(L)Y=KDIAG(IsL)
N=2

RETURN

N=1

RETURN
M=I0OFDG(Is1)

DO 7 K=1¢M

L=TOFDG(TIK%2)
IF(L=J) 79857
CONTINUE

N=1

RETURN
MPOS=IOFDG(IsK*2+1)
DO 9 L=1s4
A{L)=KOFDG(MPOSsL)
N=2

RETURN

END
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SUBROUTINE STRSYM(1sJsA)

AUTHOR=~ De Ae NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE TRANSFERS SUBMATRIX I,J FROM ARRAY A BACK INTO
THE SYMMETRIC GLOBAL STIFFNESS/FLEXIBILITY MATRIXe

COMMON FILL1(160)+KDIAG(P)sKOFDG(P)ICFDG(P)
DYNAMIC ARRAY KDIAG(R)sKOFDGI(R) 9 IOFDG
DIMENSION A(4)

IF({I=J) 19243

RETURN

DO 4 L=1s4

KDIAG(IsL)=A(L)

RETURN

M=10FDG(Is1)

DO 5 L=1M

IF(IOFDG(IsL*¥2)=J) 59695

CONTINUE

RETURN

MPOS=IOFDG(IsL%#2+1)

DO 7 L=1s4

KOFDG(MPOSsL)=A(L)

RETURN

END

SUBROUTINE FNDNSM(NsIsJsA)

AUTHOR=- De Ae NAGY
LANGUAGE~- ICETRAN

THIS SUBROUTINE RETRIEVES 2X2 SUBMATRIX IsJ FROM THE NON=SYMMETRIC
GLOBAL STIFFNESS/FLEXIBILITY MATRIX AND STORES IT IN THE ONE-
DIMENSIONAL ARRAY Aes IF THE SUBMATRIX IS ZEROs THE VALUE OF N

IS RETURNED =0

COMMON FILL1(168)sFCMAT(P)sDUM(2)sIRELL1(P)
DYNAMIC ARRAY IREL1»FCMAT
DIMENSION A(4)
N=IREL1(2%IsJ)+1

GO TO (192) N

RETURN
A(1)=FCMAT(Je2%1~191)
A(2)=FCMAT(Js2%[=1,42)
A(3)=FCMAT(J92%Is1)
Al(4)=FCMAT(Js2%]»2)
RETURN

END
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SUBROUTINE STRNSM(1sJsA)

AUTHOR= De Ae NAGY
LANGUAGE= ICETRAN

THIS SUBROUTINE TRANSFERS THE SUBMATRIX IsJ FROM ARRAY A BACK
INTO THE NON-SYMMETRIC STIFFNESS/FLEXIBILITY MATRIXs

COMMON FILL1(168)9sFCMATI(P)sICUREL(P)IREL1I(P)
DYNAMIC ARRAY FCMATsICURELIREL1
DIMENSION A(4)
I1=IDEF{JINKyINK 9 INK9sFCMAT 9 Js2%1)
IF(ITY 19291

DEFINE FCMAT(J92%1-1)s2sFULL
DEFINE FCMAT(J92%¥1)92sFULL
DESTROY FCMAT

IREL1(2%I-19J)=1

IREL1I(2%T9J)=1
N=IDTF(JNK s INK 9 INK 3 ICUREL s J)

DO 3 L=1sN
IF(ICUREL(JsL)=2%1=1) 39494
CONTINUE

GO TO 6

DEFINE ICUREL(J)sN+2sHALF
KK=N=L+1

DO 5 K=1yKK
ICUREL(J9N+3=K)=ICUREL (JyN+1=K)
ICUREL (JyL)=2%1=1
ICUREL(JobL+1)=2%1
FCMAT(Je2%I=191)=A(1)
FCMAT(Je2%I=192)=A(2)
FCMAT(Je2%T191)=A(3)
FCMAT(Je2%192)=A(4)

RETURN

DEFINE ICUREL{J)sN+2sHALF
ICUREL(JgN+1)=2%1=1
ICUREL(JgN+2)=2%1

GO 70 1

END
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NON=SYMMETRIC SOLVER INTERFACE PROGRAM,

SUBROUTINE STNSSL

AUTHOR- De Ae NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE ACTS AS AN INTERFACE BETWEEN THE SYSTEM
AND A NON-SYMMETRIC SOLVER ORIGINALLY WRITTEN FOR ANOTHER
SYSTEMe IT TRANSFERS THE PORTION OF THE LOAD/ROTATION
VECTOR FOR EACH INDEPENDENT LOADING TO AN ARRAY COMPATIBLE
WITH THE SOLVER AND THEN CALLS THE SOLVER ONCE FOR EACH
INDEPENDENT LOADING CONDITIONs AFTER EACH SOLUTIONy IT
TRANSFERS THE RESULTS BACK INTO THE ARRAY KPPRI FOR USE

BY THE BRACKSUBSTITUTION PHASE PROGRAMS.

COMMON KDANG9NCUT9FILL1(98)9sNSOLINNsNLDSISFILL2(59)sFPMAT(P)
COMMNON FCFOR(P) sKPPRI(P)

DYNAMIC ARRAY FPMATFCFORyKPPRI(R)

NCUT=NSOL

DEFINE FPMAT»2#¥NCUTsFULL

LOOP ON ALL ACTIVEs INDEPENDENT LOADING CONDITIONS
TRANSFER LOAD/ROTATIONS VECTOR PORTION FROM KPPRI TO
FPMAT AND CALL NON-SYMMETRIC SOLVER STNDUM

DO 96 L=19NLDSI

DO 98 N=1yNCUT

FOMAT (2%*N=1)=KPPRI(Ny2%L~-1)
FPMAT(2%N)=KPPRTI(Ny2%*L)
CALL STNDUM

TRANSFER RESULTS FROM FCFOR BACK TO KPPRI

DO 97 N=1oNCUT
KPPRI(N92%L=1)=FCFOR(N»s1)
KPPRI(Ny2%#L)=FCFOR(Ny2)
CONTINUE

NSOL=NCUT

RELEASE KPPRI

DESTROY FPMAT

DESTROY FCFOR

RETURN

END
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A7-7 BACKSUBSTITUTION PHASE.

SUBROUTINE STNBKS

C

C AUTHOR= De Ae NAGY

C LANGUAGE~ ICETRAN

C

C THIS IS THE EXECUTIVE FOR THE BACKSUBSTITUTION (AND

C TEMPORARILY THE OUTPUT) PHASE.

C :

ODIMENSION ND(3)sX(3)sY(3)sU(3)sVI(3)sA(3)9sB(3)sE(M)sS(3)9PS(2))

1 PE(2)
COMMON FILL1(100) oNSOLsDFILL(49) 9LEXT(P)»FILL2(14)sKPPRI(P)
COMMON FILL3(87)sLEXTN
COMMON LTYP(P)sFILL&(3)sLDTLE(P)sFILLS(3)9JEXTNYFILLE(S)9JTXYZ(P)
COMMON FILLT7(47)sNJsNFILL9NLDSTSFILLB(9)9JEXTI(P)SFILLG(30)
COMMON ELPROP(P)sFILL10(18)sNBXTELsNDFILINSYMsFILLL11(12) sNODISP (P,
COMMON STRAIN(P)
COMMON STRESS(P)sPRSTRN(P) sPRSTRS(P)sFILL12(5)yIPROByFILL1IZ(11)
COMMON SFTEMP(P) sRNDTEM(P)
DYNAMIC ARRAY NODISP(R)sSFTEMPsSTRESSsSTRAINSPRSTRSSPRSTRN
DYNAMIC ARRAY RNDTEM.JEXT,LDTLE(R)oELTOP(I)oJTXYZ(R)gELPROP
DYNAMIC ARRAY KPPRI(R)sLEXT
DYNAMIC ARRAY LTYP

C

C DEFINE NODISP AND TRANSFER RESULTS FROM KPPRI TO NODISP,

C COMPUTE RESULTS FOR DEPENDENT LOADING CONDITIONS,

C

DEFINE NODISPsLEXTNIJEXTNG
DESTROY NODISP
DO 60 I=1yNJ
DO 60 L=1sNLDSI
LON=LEXT (L)
JTN=JEXT(I)
NODISP(LDNsJTNsl)=KPPRI(Iy2%L-1)
60 NODISP(LDNsJTN92)=KPPRI(T92%L)
. DO 61 L=19LEXTN
J=LTYP(L)+1
GO TO (621962961961 962962961961)9J
62 NLC=LDTLE(Ls17)
DO 63 M=19»NLC
DO 63 N=19JEXTN
ONODISP(L sN9s1)=NODISP(LsNo1)+NODISP(LDTLE(Ly16+2%M) 4Nyl )*LDTLE(L,
1 16+42%M+1)
63 ONODISP(LsN92)=NODISP(LsNs2)+NODISP(LDTLE(Ls16+2%M) sNg2)*LDTLE(L
1 17+2%M)
61 CONTINUE
IF(IPROB) 19292
1 IF(IPROB+2) 3432

DEFINE ARRAYS FOR STORAGE OF ELEMENT STRESSES AND
STRAINSy PRINCIPAL STRESSES AND PRINCIPAL STRAINS.

aEaNaXA]

2 DEFINE STRESSsLEXTNsNBXTEL6




(@)

NNNONO

[aNaNaRAXA)

-192-~

DESTROY STRESS
DEFINE STRAINSLEXTNSNBXTEL 6
DESTROY STRAIN
DEFINE PRSTRSsLEXTNINBXTEL 94
DESTROY PRSTRS
DEFINE PRSTRNsLEXTN9NBXTEL &4
DESTROY PRSTRN

LOOP ON ALL ELEMENTS

3 DO 99 NE=1sNBXTEL
DO 4 I=193
ND(I)=ELTOP(NEs»I+1)

OBTAIN COORDINATES OF NODES INCIDENT UPON CURRENT ELEMENT
AND ELEMENT PROPERTIESe

X(I)=JTXYZ(ND(T)s1)
4 Y(I)=JTXYZ(ND(1)92)
Al1)==X(2)+X(3)
AL2)==X(3)+X(1)
AL3)==X(1)+X(2)
B1)==Y(2)+Y(3)
B(2)==Y(3)+Y(1)
B(3)==Y(1)+Y(2)
AREA=0e5%ABS(X(1)*B(1)+X(2)%B(2)+X(3)*B(3))

CTX=ELPROP (NE»10)
IF(CTX) 59655

6 CTX=ELSTCT

5 CTY=ELPROP(NE»11)
IF(CTY) Te8y7

8 CTY=CTX

7 EX=ELPROP (NE»6)

IF(EX) 991099
10 EX=ELSTDE

9 EY=ELPROP (NE» 7)
IF(EY) 11912911
12 EY=EX

11 PX=ELPROP(NE»8)
IF(PX) 13914913
14 PX=EILLSTPO
13 G=ELPROP(NE#12)
IF(G) 15916915
16 G=ELSTDG
15 H=ELPROP(NEs2)
DO 99 LO=1+LEXTN
DO 17 I=1,3 _
ULT)=NODISP(LOIND(I})91)
17 V(I)=NODISP(LOWND(I)92)

CALL STESTR OR STESCP TO COMPUTE ELEMENT STRESSES,
STRAINSSETCes DEPENDING ON WHETHER THE PROBLEM JUST
SOLVED WAS STRETCHING OR BENDINGe

IF(IPROB) 18919919
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IDEL=3

JDEL=2

CALL STESCP(EXSEYsPXsCTX9CTY9GoHoLOYNESIAREASAIByUIVIEIS9PSHPE)
GO 70 20

IDEL=0

JDEL=0

CALL STESTR(EXSEYsPXsCTXsCTYsGosLOSNE9AREA9A»BsUsVeES»SyPSePE)
DO 21 I=142

STRESS{LOSNES I+IDEL)=S(1)

STRAIN(LOSNES I+IDEL)=E(I)

PRSTRS(LOWNE I+JDELI=PS(])

PRSTRN(LOYNE I+JDEL)=PE(T)

STRESS(LOWNE»3+IDEL)=S(3)

STRATIN(LOSNE3+IDEL)I=E(3)

IT=1IPROB+3

GO TO (22922924923423)917

STORE STRESS FUNCTIONS IN ARRAY SFTEMP AND TRANSFER
NODAL DISPLACEMENTS (X AND Y COMPONENTS) FROM RNDTEM
BACK TO NODISP.

DEFINE SFTEMPSLEXTN9JEXTN 2
DO 25 I=1yLEXTN

DO 25 J=19JEXTN
SFTEMP(IsJsl)=NODISP(IsJsl)
SFTEMP(I9J92)=NODISP(IsJs2)
GO TO (26927} 1T
NODISP(I9J91)=RNDTEM(IsJs1l)
NODISP(I9Js2)=RNDTEM(IsJs2)
GO TO 25

NODISP(IsJsl)=0s
NODISP(I9Js2)=0s

CONTINUE

GO TO (28929)s1T7

TRANSFER NODAL DISPLACEMENTS TO TEMPORARY ARRAY RNPNTEM
SO THAT NODISP WILL BE FREE FOR BENDING SOLUTION PHASE)

" WHICH IS NEXTe

DEFINE RNDTEMsLEXTNsJEXTNs2
DO 30 I=1oLEXTN

DO 30 J=1»JEXTN
RNDTEM(I9Js1)=NODISP(IsJsl)
RNDTEM(I9J92)=NODISP(IsJs2)
RELEASE RNDTEM

GO TO 24

DESTROY RNDTEM

RELEASE SFTEMP

RELEASE STRESS

RELEASE STRAIN

RELEASE PRSTRS

RELEASE PRSTRN

RELEASE NODISP

RELEASE ELTOP

RELEASE JTXYZ
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RELEASE ELPROP
DESTROY KPPRI
IF(IPROB=2) 31432932

IF PROBLEM IS COMPLETELY FINISHEDs CALL TEMPORARY OUTPUT
SUBROUTINE STNOUT AND RETURNa

CALL STNOUT
RETURN

IF PROBLEM 1S GENERAL PLATE PROBLEM» CONSTRUCT STACK
OF PROGRAMS FOR BENDING SOLUTION PHASE AND TRANSFER
TO THE FIRST PROGRAM IN THE STACK.

IPROB==2

NSOL=NJ

IF(NSYM=1) 3151005101

ADD TO STACK (1s!'STNBKS!)
ADD TO STACK (1s!'STSLVR?')
ADD TO STACK (1s!'STNBCM!)
ADD TO STACK (1s!STEASS!)
ADD TO STACK (1s?'STNGEN!')
TRANSFER TO STACK

ADD TO STACK (19*STNSAS?)
GO TO 102

END
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SUBROUTINE STESTRUEXSEYsPXsCXsCYsGoL9sNsARsASBIUIVIEISIPSHPE)

AUTHOR= De Ae NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE COMPUTES THE ELEMENT STRESSESsSTRAINS,
PRINCIPAL STRESSESs AND PRINCIPAL STRAINS FOR THE ELEMENT
WHOSE PROPERTIES ARE PASSED TO IT AS ARGUMENTS.
THE COMPUTED VALUES ARE RETURNED IN THE DIMENSIONED
ARRAYS E»S9PSy AND PEs
DIMENSION A(3)9B(3)sU(3)sVI3)IE(3)9S(3)sPE(2)9PS(2)
COMMON FILL(367)sELOADS(P)
DYNAMIC ARRAY ELOADS
E(1)==045%(B(1)*U(1)+B(2)%U(2)+B(3)*%¥U(3))/AR
E(2)=0e5*% (A(L1)*¥V(1)+A(2)¥V(2)+A(3)%*V(3))/AR
OE(3)=0e5#(A(1)¥U(1)=Bl1)%¥V(1)+A(2)%U(2)-B(2)*¥V(2)+A(3)*¥U(3)=
1 BI2Y%V({3))/AR
TII=IDEF(JUNKs INK s INKsELOADS N L)
IF(IIY 19192

ADD TEMPERATURE STRAIN ROUTINE HERE LATER
DUMMY STATEMENT NOe 2 FOR NOW o o o

GO 70 1

EXT=OO

EYT=O.

EXL=E(1)=EXT

EYL=E(2)=EYT

PY=EX%PX/EY

SU1Y=EX*¥(EXL+PX¥EYL)/(1le=PX%*PY)
S(2)=EY*(EYL+PY*¥EXL)/(1e=PX*¥PY)

S{3)=G*E(3)

SXP=SQRT(((S(1)=S(2)1%%24)/2e + S(3)%%24)
SYP={S(1)+S5(2))/2%

PS(1)=SXP+SYP

PS(2)=SYP=SXP :
EXP=SQRT(((E(L1)=E(2))%%24)/2e + (E(3)/2¢)%%24)
EYP=(E(L)+E{(2)) /2

PE(1)=EXP+EYP

PE(2)Y=EYP~=EXP

RETURN

END
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SUBROUTINE STESCP(EXsEYsPXsCX9CY9GoHsLsNsARsAsBsUsVsEsS9PSIPE)

AUTHOR=- D. Ae NAGY

LA

NGUAGE=- ICETRAN

THIS SUBROUTINE COMPUTES THE BENDING STRESS COUPLES)H

cu

RVATURESs PRINCIPAL COUPLES, AND PRINCIPAL CURVATURES

FOR THE ELEMENT WHOSE PROPERTIES ARE PASSED TO IT AS

AR
AR

0
1

GUMENTSe THE RESULTS ARE RETURNED IN THE DIMENSIONED
RAYS EsSsPSsAND PE,

DIMENSION A(3)o8(3)oU(3)9V(3)’E(3)95(3)oPE(Z)’PS(2)9NODE(3)
COMMON FILL1(365)ELTOP(P)sELOADS(P)sFILL2(52)yPBSOLNI(P)
COMMON PBSOLE(P)sFILL3(4)s IPRTICIP)

DYNAMIC ARRAY ELOADSsPBSOLEsIPRTIC)PBSOLNyELTOP(I)
PY=EX#PX/EY

DX=EX* (H*%34) /(124%(1a=PX*PY))

DY=EY*DX/EX

IF(IPRTIC(L)Y) 19ls2

RKX=PBSOLE(LsNs1)/AR

RKY=PBSOLE(LsNs2}) /AR

GO TO 8

IF(PBSOLE(LsNs1)) 3943

IF(PBSOLE(LsN92)) 39593

RKX=PBSOLE(LsNs1)

RKY=PBSOLE(LsN»2)

GO TO 8

DO 6 1=143
NODE(1)=ELTOP(NyI+1)
RKX=04

RKY=04

DO 7 I=143

RKX=RKX+PBSOLN(LyNODE(I) 1) /30

RKY=RKY+PBSOLN(LyNODE(I)s2)/30

SCXP==DX# (RKY+PX¥RKX)

SCYP=z=DY# (RKX+PY*RKY )

S(1)=0e5%(A(1I%V(1)+A(2)%VIZ)+A(3)*V(3))/AR

S(2)==0¢5%(B(1)*U(1)+B(2)*%U(2)+B(3)%U(3))/AR

S(3)=-0025*(A(1)*U(1)-B(1)*V(1)+A(2)*U(Z)-B(2)*V(2)+A(3)*U(3) -
B(3)*V(3))/AR

E(1)=126%#(S(1)=PY%S(2))/ (EX¥HX¥34)=RKY

E(2)=12¢#(S(2)-PX*S(1))/ (EY*¥H¥X%34)-RKX

E(3)=(12e/(G¥H%*%34))%S5(3)

I1=INEF(JUNKs JNKs JNK9ELOADSsNoL)

IF(IT) 999910

ADOD TEMPERATURE CURVATURE ROUTINE HERE LATER
DUMMY STATEMENT NO. 10 FOR NOW

GO TO 9

EXT=0,

EYT=0e
E(1)=E(1)+EXT
E(2)Y=E(2)+EYT
S{1)=S(1)+SCXP
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S(2)=5(2)+SCYP
SXP=SQRT(((S(1)=S(2))%%24)/2¢ + S(3)%%2,)
SYP=2(S({1)+45(2))/2

PS(1)=SXP+SYP

PS(2)=SYP=SXP
EXP=SQRT(((E(1)=E(2))%%24)/24 + E(3)%#%2,)
EYP=(E(L1)+E(2))/20

PE(1)=EXP+EYP

PE(2)=EYP=EXP

RELEASE PBSOLE

RELEASE PBSOLN

RELEASE ELTOP

RELEASE IPRTIC

RETURN

END
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SUBROUTINE STNOUT
AUTHOR~= De Ae NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE 1S A TEMPORARY OUTPUT SUBROUTINE

INCLUDED IN THE LOAD MODULE STNBKSe IT OQUTPUTS THE

NODAL DISPLACEMENTS FOR THE STRETCHING PROBLEM ONLYs THE
ELEMENT CENTERED VALUES OF STRESS»STRAINyPRINCIPAL

STRESSs AND PRINCIPAL STRAIN FOR THE BENDING AND STRETCHING
PROBLEMSe THIS OUTPUT IS PRODUCED WITHOUT THE REQUEST

OF THE USERe

COMMON FILL1(250)9sLDID(P)sFILL29yLEXTNSFILL3(T7)sJTID(P)sFILLG4sJEXTN
COMMON FILL5(94)sELID(P)sFILLGE(22) sNBXTELFILLT(14) sNGDISP(P)
COMMON STRAIN(P) sSTRESS(P) sPRSTRN(P)gPRSTRS(P)
DYNAMIC ARRAY LDID(D)sJTID(D)$ELID(D)9NODISP(R)»STRESSsSTRAIN
DYNAMIC ARRAY PRSTRS#PRSTRN
DIMENSION DATA(6)sPDATA(4)
DOUBLE PRECISION DuM1

WRITE (65101)

WRITE (69117)

DO 99 L=14LEXTN

DUM1=LDID(L)

WRITE (69101)

WRITE (6+100) DUM1

WRITE (649101)

WRITE (65102)

WRITE (69103)

DO 10 J=1sJEXTN

DUM1=JTID(J)
DUM2=NODISP{LsJs1)
DUM3=NODISP(LsJ92)

WRITE (65104) DUM1,DUM2sDUM3
WRITE (64101)

WRITE (6,105)

WRITE (649106)

DO 20 I=1»NBXTEL
DUM1=ELID(I)

DO 21 N=1y6
DATA(N)=STRESS(LsIsN)

WRITE (65107) DUM1, DATA
WRITE (649101)

WRITE (649108)

WRITE (649109)

DO 30 I=1,NBXTEL
DUM1=ELID(I)

DO 31 N=196
DATA(N)=STRAIN(LsIsN)

WRITE (69110) DUM1l,y DATA
WRITE (65101)

WRITE (649111)

WRITE (69112)

DO 40 I=1)NBXTEL
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DUM1=ELID(I)
DO 41 N=1li4
41 PDATA(N)=PRSTRS(LsIsN)
40 WRITE (69113) DUM1, PDATA
WRITE (65101)
WRITE (69114)
WRITE (69115)
DO 50 I=1sNBXTEL
DUM1=ELID(I)
DO 51 N=1ls4
51 PDATA(N)=PRSTRN(LsIsN)
5C WRITE (6+116) DUM1, PDATA
99 CONTINUE
RETURN
100 FORMAT(19H LOADING CONDITION s AS8)
101 FORMATI(1H )
102 FORMAT(20H NODAL DISPLACEMENTS)
103 FORMAT(23H NODE U V)
104 FORMAT(ABs2F1046)
105 FORMAT(17H ELEMENT STRESSES)
106 OFORMAT(65H ELEMENT SX SY SZ MX MY
1 MXY)
107 FORMAT(A893F104293F10s1)
108 FORMAT(16H ELEMENT STRAINS)
109 OFORMAT(66H ELEMENT EX EY GAMMA-=XY CHI=X CHI-Y
1 CHI=XY)
110 FORMAT(AB893F10e793F1046)
111 FORMAT(27H ELEMENT PRINCIPAL STRESSES)
112 FORMAT(44H ELEMENT Sl S2 M1 M2)
113 FORMAT(AB92F104292F1061)
114 FORMAT(26H ELEMENT PRINCIPAL STRAINS)
115 FORMAT(45H" ELEMENT El E2 CHI=1 CHI=2)
116 FORMAT(AB892F1CeT792F1066)
117 FORMAT(38H UNITS ARE INCHESy POUNDSs AND RADIANS)
END
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APPENDIX 8

Programmer's Information

A8-1 Introduction

This appendix is intended to serve as a guide to someone
with a good knowledge of FORTRAN-IV programming for completing
the debugging of the system developed in this thesis or
adding to its capabilities,

A8-2 Programaing Languages

a) All computer programming for the system developed in
this thesis was done within the context of the Integrated
Civil Engineering System (ICES) being developed by the i:IT
nepartment of Civil Engineering. For a general overview of
ICES, the programmer should consult

"ICiS: CONCEPTS Alib FACILITIES," Department of Civil

Engineering, MIT, 1965.

b) The routines for reception of input,i.e., the defi-
nitions of the problem-oriented coiuwnands described in Chapter
4, were written in Command Definition Language (CLL), which is
itself a probleu~-oriented language that may be learned relatively
guickly. For a discussion of the philosophy of problen-
oriented languages within the context of ICES, refer to Chapter
of "ICES: Concepts and Facilities." The User's llanual for
COL is Chapter 3 of

"ICES: Programmer's Guide," lepartment of Civil Engineering,
AIT, 1965,

and provides a complete description and some examples of CLIL
commnands, If anditional questions arise concerning some
aspect of CLL, the programmer should consult Mr. Ronald A.
Walter, instructor in the WIT Department of Civil Engineering,
who wrote the Command Definition Language.

¢) T"he subroutines for processing and storage of input
data, solution of the specified probleum(s), and output of
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results were written in ICETRAN (ICES-FORTRAN). ICETRAN is
the FORTRAN-IV language with the added capability of more
flexible data array storage (dynamic memory allocation) and
other forms of program linkage in addition to the CALL state-—
ment of FORTRAN., ICETRAN programs are first processed by a
pre-compiler that translates the program into legitinate
FORTRAN with calls to ICES library subroutines to perform the
various tasks of the ICETRAN statements. The resulting
translated program is then processed by the FORVRAN-IV com-
piler. |

The philosophy of dynamic memory allocation and dynamic
program linkage 1s discussed in Chapt. of "ICES: Concepts
and Facilities." The detailed description of all ICETRAN
commands 1is contained in Chapter 2 of "ICES: Progra:mer's Guide."

AB8-3 STRUDL Subsystem and the Finite Klement Analyzer

The programning system of this thesis was developed in
the form of additions to STRUDL (STRUctural Design Language),
a problem-oriented language subsystem of ICES for problems in
structural engineering. In particular, these additions apply
directly to the Finite Element Analyzer, a portion of the
STRUDL subsystem which deals directly with the application of
the finite element method. Initial documentation of the
Finite Element Analyzer is given in

Ferrante,A.J., "A System for Finite Analysis," S.k. Thesis,

Department of Civil Engineering, MIT, January 1967.
but its author lir. Ferrante, an instructor in the MIT Civil
Engineering Uépartment, should be contacted to obtain the most
recent version. The programmer should bevthoroughly familiar
with the input commands, dynamic ICETRAN data arrays, and
COilMON data storage of the Finite Element Analyzer before
working with the pfograms of this thesis. The data arrays used
to store the symmetric global stiffness/flexibility matrix
are most completely described in

LIEMO IS 21.3 - Non Linear Analysis in STRUDL - Sata
Structure.




-202-

The arrays used for the storage of the non-syumetric global
matrix are given here for lack of current cocumentation
elsewhere,

1. Storage array:

FCMAT(I,J,K)
where
I= hypercolumn of the global structurasl stiffness/
flexibility matrix
J= row
K= column within hypercolumn I (1 or 2)

2. Bookkeeping arrays:

ICUREL(I,J)
where

I

J

hypercolumn

number of Jth non-zero row in Ith hypercolumn
LREL1(I,J)

where
I
J

row of the global matrix

O if Jth hypercolumn of row I is zero
=1 if Jth hypercoluun of row I is non-zero

A8-4 Running of CDL, LCATRAN, and STRUDL-Finite Element Analyzer
Programs on the Computer

The programs of this thesis were written to be run under
the CESL (Civil Engineering Systems Laboratory) Monitor on
the IBN System/360 computer in the MIT wvepartment of Civil
Engineering. A description of the necessary control cards
and program deck arrangements for all types of computer runs
necessary to modify and use the system of this thesis is given
in '

IG MELMO 32, "The 'we of CESL ICES and 0S ICES to Create,

Modify, and Run Subsystems," nIT Department of Civil
Br.gineering, April 26, 1967.

Necks to be run are submitted in the bins located in room 1-147,
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adjacent to the IBM System/360 room. Jobs with an estimated
running time of less than five minutes are submitted in the
express bin and are "usually" run twice a day. Jobs of
longer duration are run during the night if time peruits.

A8-5 Interpretation of Output and Debugging Aids

a) CDL - execution of CDL programs includes reprinting
each CDL coummand. Any error messages immediately
follow the command that caused them, and are usually
quite adequate for understanding the error committed.
If the number 1 appears on the line following the
FILE command ending a CDL program, it means that the
program was interpreted successfully and the command
defined is now a part of the complete dictionary of
commands on the disk files.

) ICETRAN SUBROUTINES -~ compilation of ICETRAL subroutines
begins with a complete listing of the ICLYRAN vprogram
as it is being processed by the precompiler. Any
error messages imuediately follow the statement that
caused them. A complete description of the meaning
of ICETRAN Precompiler error messages is contsined in
Chapt. of "ICLS: Programmer's Guide." Following the
listing of each subroutine is a COLHON map giving the
relative location of each COLLON variable from the
beginning of COLLION.

If no errors are detected by the precompiler, the
programns are then processed by the FORTRAN compiler.
In this processy: the translated FORTRAN program is
listed, with each line numbered consecutively. This
listing is followed by a list of COuluON variables,
local variables, constants, and statement numnrbers, with
the relative locations of each given in the hexadecimal
(base 16) number system. If any errors were detected
in the Fortran compilation, the messages are printed
after the list of COMMON variables, local variables,
constants, and statement numbers., A complete explanation
of these error messages may be found in
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IBN System/360 BPS, FORTRAN IV 360P-F0-031,
Programmer's Guide, C28-6583 (Appendix A).
A discussion of some of the more common error messages in
compilation and execution of FORTRAN programs, and bugs in
the FORTRAN compiler, may be found in
CESL :.ENMO 25 (Mrs. Jane Jordan),"User's Guide to CESL
Monitor System," lay 5, 1967.
Any problems not clarified by the above two documents saould
be taken to hirs. Jane Jordan in Room 1-153.
¢ )Load Module Generation - the grouping of subroutines together
in a package and storage of this package on the disk files of
the STRUDL Subsystem is accomplished by Linkage kditor runs.
These runs precompile and compile each subroutine, as discussed
in item b) above. If no errors are detected in any of the
compilations, the package of programs is filed on the disk.
A storage map is printed giving the relative locations (in
hexadecimal number system) of all subroutines and ICES library
routines included in the Load Module. If all these routines
are found during the packaging and added to the load module
package, the message LOADING COMPLETE is printed.
d)Subsysten Executioﬁ - if errors occur during execution of one
of the subroutines of the subsystem, the error message causing
termination of the job may not always make the nature of the
error evicdent., In the case of any error in dynamic array
storage or retrieval, a fairly brief error message is printed
giving the nature of the error and hexadecimal program loca-
. tion (object program) where the error occurred. By referring
to the l1list of relative locations of statement numbers at
the end of the Fortran compilation and the Storage Map at the
end of the Load Module formation run, the programmer can
determine approximately where the error occurred in the original
ICETRAN source program,
Example:
The following message might appear during subsystem
execution:
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1014479 4000E4 8C

L2 2T 2
ERROR IN DYNAWIC ARRAY STORAGE OR RETRIEVAL AT THE

PROGRAM LOCATION SHOWN ABOVE

The last four digits of the number undelined by asterisks
is the program location. From this number should be
subtracted the number DFOO, which is the location of

the first subroutine of the load module currently being
used.

E48C
-DFQ0

58C
This number is then the relative location of the error
within the load module. Referring to the Storage Map
of the load module, it is seen that the first subroutine
of the load module is stored at 2600. Thus adding 58C
to 2600 will yield the relative location where the error
occurrea in the Storage Map. It may then easily be
seen in which program this location falls. Subtracting
the storage map location of the beginning of the par-
ticular program from 2600+58C will then yield the relative
location within the program. This location may be com-
pared to the relative locations of numbered statements,
which is found at the end of the FORTRAN compilation
of the program.

Errors other than dynamic array storage and retrieval
are more difficult to trace. The following debugging
commands may be inserted in the subsystem job runs to
obtain more information about the execution of the job
at the time that the error occurred:

DBGXCO

This command causes the course of action of the Execution
Coordinator to be explicitly stated from the point where
DBGXCO 1is inserted until the end of the job., The
Execution Coordinator obtains modules from the disk files
and directs the computer to execute particular programs
accordaing to the specifications of CDL or the previous
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subroutine executed. The programuer can then tell if
all programs that are supposed to be executed actually
are being executed in the proper order and also exactly
which program was being executed when the error occurred.

DBGALL

This comiiand causes a complete dump of the core storage
area where lhe current load module is stored during its
execution. The dump occurs after the error is detected,
so that it shows the status of the program at the time
that the error occumed. Mrs. Jane Jordan should be
consulted for interpretation of the results of the duanp.

POOLLP

This comnand causes a complete dump of COMMON storage
area plus the data pool of arrays currently in the
computer.

PRINT DATA

This comumand causes all data relating to nodes that has
been input by the user to be printed out.

NAGY UEBUG
This coummand prints out the constructed boundary chains,
specified boundary conditions, dislocations, nodal loadings,

and specified values of the particular bending solution or

computed exact values.

For additional debugging aids, interpretation of
debugging inrormation, and general counseling on location
of bugs in the system, the programmer is referred to
lrs. Jane Jorden in Room 1-153,
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APPENDIX 9

SAMPLE PROBLEM

/408 (NAME) (ACCOUNT NUMBER)

/ASSIGN 3=ICES

/ASSIGN 2=STRUDL

/RESTORE SYS1

STRUDL

PROBLEM 'EXAMPLE' 'DUAL METHOD!
UNITS FEET POUNDS RADIANS

TYPE DUAL PLATE GENERAL NONSYMMETRIC
NODE COCRDINATES

1 X 0e Y 24 B
2 X le Y 24 B
3 X 2 Y 24 B
4 X 24 Y 1le B
5 X 2¢ YO0 B
6 X le Y O¢ B
7 X 0Os Y O8 B
8 X 0Oe Y leo B
9 X le Y 1o
ELEMENT INCIDENCES
1 821 '
2 89 2

39 132

4 9 4 3 '
5 79 8

6 7T 6 9

T 6 4 9

8 6 5 &4
BOUNDARY INCIDENCES
fOUTER! 1
UNITS KIPS

ELEMENT PROPERTIES

1 TO 8 THICKNESS +25 DENSITY 415 TYPE 'FTOD' G 8000

1 TO 4 EX 430000. EY 200000e PX o418

5 TO 8 EX 200000e PX 15

BOUNDARY CONDITION 'OUTER' RIGID FREE
XP 240 YP 25 FX 2 FY o3 MP .13

3 TO 1 CHI Oe EPSILON O

CLAMPED EDGE 'QUTER' 7 TO 5

BOUNDARY CONDITION DISPLACEMENT BENDING
1 TO 7 W 022 R Os

3 70 2 W Oe R 0w

UNITS POUNDS

LOADING 'SAMPLE1t 'EXAMPLE OF LOADING COMMANDS!
NODE LOACS

8 FORCE X 200e Y 3CO,

4 FORCE X 250,




LINE LOAD
X 100
X 200
X 1004

7 FORCE
9 FORCE
3 FORCE
GRAVITY
LOADING
BENDING
NODES 1
NODES 8
NODES 7
END

LOADING
BENDING
LOADING

LOAD ANGLE=X O
YSAMPLE2!

-208=-

ANGLE=Z 1410

PARTICULAR SOLUTION
2 3 KX 0s KY 003
9 4 KX Os KY 4006
6 5 KX 0s KY 0002

'SAMPLE3!

LIST

' SAMPLEL!

FINITE ANALYSIS

FINISH
/END OF

FILE

'SAMPLE2!

"EXAMPLE OF SPECIFIED PARTICULAR BENCe SOLe!

'EXAMPLE OF STANDARD PARTICULAR SOLUTION!
PARTICULAR SOLUTION UNIFORM LOAD 100

C Ceb




